PEMBANGKIT DATA OTOMATIS BERBASIS POLA DISTRIBUSI POISSON UNTUK KEBUTUHAN PENGETESAN PERANGKAT LUNAK DATA MINING DALAM PENCARIAN POLA ASOSIASI DAN POLA SEKUENSIAL
DOI:
https://doi.org/10.12962/j24068535.v1i1.a97Abstract
Data transaksi tiruan yang menyerupai transaksi nyata pada lingkungan ritel dibutuhkan dalam pengetesan teknik data mining untuk pencarian pola asosiasi dan pola sekuensial dari basis data berskala besar. Dalam
dunia nyata, terdapat kecenderungan bahwa pembeli melakukan pembelian beberapa item secara bersamaan dengan ukuran transaksi terkelompok di sekitar nilai rerata banyaknya item yang dibeli dan membentuk pola
distribusi Poisson. Makalah ini membahas pengembangan pembangkit data otomatis yang mengikuti pola distribusi Poisson untuk kebutuhan pengetesan perangkat lunak data mining dalam pencarian pola asosiasi dan pola sekuensial.
Dalam proses pembangkitan data, perangkat lunak ini menggunakan beberapa parameter, seperti jumlah item, ukuran rerata itemset, ukuran maksimum large itemset, jumlah large itemset, ukuran rerata transaksi, ukuran
maksimum transaksi, dan jumlah transaksi. Sedang tahapan pembuatan transaksi tiruan meliputi pembentukan item yang akan dimasukkan ke dalam transaksi, pembuatan large itemset dari kumpulan item, dan pembuatan
transaksi. Ukuran masing-masing itemset dan transaksi didasarkan pada pola distribusi Poisson dengan rerata sama dengan ukuran rerata large itemset/transaksi.
Uji coba perangkat lunak yang dilakukan terhadap berbagai nilai parameter membuktikan bahwa pembangkit data otomatis mampu menghasilkan data transaksi tiruan dalam jumlah besar dengan waktu
komputasi yang relatif singkat. Hasil uji coba menunjukkan bahwa (a) semakin besar ukuran rerata transaksi, semakin besar pula jumlah record, waktu pembuatan dataset, ukuran basis data, dan jumlah frequent itemset
yang ditemukan, (b) semakin besar jumlah transaksi, semakin besar pula jumlah record, waktu pembuatan dataset, dan ukuran basis data yang dihasilkan, dan (c) semakin besar jumlah itemset yang dibuat, semakin
sedikit jumlah pola yang ditemukan.
Kata kunci: pembangkit data otomatis, pola distribusi poisson, data mining, pola asosiasi, pola sekuensial.
Downloads
Downloads
Published
Issue
Section
How to Cite
License
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in JUTI unless they receive approval for doing so from the Editor-in-Chief.
JUTI open access articles are distributed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.











