PENGENALAN SISTEM ISYARAT BAHASA INDONESIA MENGGUNAKAN KOMBINASI FITUR STATIS DAN FITUR DINAMIS LMC BERBASIS L-GCNN
DOI:
https://doi.org/10.12962/j24068535.v14i2.a574Abstract
Jumlah karya ilmiah yang dihasilkan oleh akademisi dan peneliti di Indonesia semakin banyak, terutama setelah diterbitkannya surat edaran Dirjen DIKTI tahun 2012 dimana karya ilmiah dijadikan sebagai syarat kelulusan mahasiswa S1, S2 dan S3. Namun demikian, tidak semua karya ilmiah tersebut memiliki kualitas yang baik. Masih banyak karya ilmiah yang belum memenuhi standar baku Ejaan Yang Disempurnakan (EYD). Pada artikel ini, penulis mengembangkan sebuah kakas bantu untuk mendeteksi kesalahan tanda baca pada karya ilmiah, khususnya yang berbahasa Indonesia, sesuai dengan EYD. Aplikasi dirancang agar dapat mendeteksi kesalahan tanda baca pada tulisan karya ilmiah dengan format .doc atau .docx serta dapat menghasilkan keluaran berupa arsip Microsoft Word dengan tambahan hasil telaah pemeriksaan tanda baca yang dibangkitkan secara otomatis. Deteksi kesalahan tanda baca menggunakan metode pencarian kata dengan algoritma BoyerMoore. Aplikasi kakas bantu telah diuji coba dengan hasil rata-rata nilai presisi sistem sebesar 0,6806, recall sebesar 0,969 dan akurasi sistem sebesar 0,9636. Hasil tersebut menunjukkan bahwa aplikasi sudah mampu mendeteksi adanya kesalahan tanda baca meskipun masih ada keterbatasan deteksi karena tidak semua aturan tanda baca dicakup dalam pemeriksaannya.
Downloads
References
[2] R. P. Sharma and G. K. Verma, “Human Computer Interaction using Hand Gesture,” Procedia - Procedia Comput. Sci., vol. 54, pp. 721–727, 2015.
[3] Y. Zhou, G. Jiang, and Y. Lin, “A novel fi nger and hand pose estimation technique for real-time hand gesture recognition,” Pattern Recognit., vol. 49, pp. 102 114, 2016.
[4] A. Z. Shukor, M. F. Miskon, M. H. Jamaluddin, F. bin Ali@Ibrahim, M. F. Asyraf, and M. B. bin Bahar, “A New Data Glove Approach for Malaysian Sign Language Detection,” Procedia Comput. Sci., vol. 76, no. Iris, pp. 60–67, 2015.
[5] C. Oz and M. C. Leu, “Linguistic properties based on American Sign Language isolated word recognition with artificial neural networks using a sensory glove and motion tracker,” Neurocomputing, vol. 70, no. 7, pp. 2891–2901, 2007.
[6] Y. Chen, Z. Ding, Y. Chen, and X. Wu, “Rapid Recognition of Dynamic Hand Gestures using Leap Motion,” no. August, pp. 1419–1424, 2015.
[7] C. Chuan, E. Regina, C. Guardino, A. L. M. Controller, and I. Apis, “American Sign Language Recognition Using Leap Motion Sensor,” pp. 541–544, 2014.
[8] B. Melis and M. Avci, “Generalized classifier neural network,” Neural Networks, vol. 39, pp. 18–26, 2013.
[9] B. Melis and M. Avci, “Logarithmic learning for generalized classifier neural network,” Neural Networks, vol. 60, pp. 133–140, 2014.
[10] G. Marin, F. Dominio, and P. Zanuttigh, “Hand gesture recognition with leap motion and kinect devices,” 2014 IEEE Int. Conf. Image Process., pp. 1565–1569, 2014.
[11] a. S. Elons, M. Abull-Ela, and M. F. Tolba, “A proposed PCNN features quality optimization technique for pose-invariant 3D Arabic sign language recognition,” Appl. Soft Comput. J., vol. 13, no. 4, pp. 1646–1660, 2013.
[12] M. Mohandes, S. Aliyu, and M. Deriche, “Arabic Sign Language Recognition using the Leap Motion Controller,” 2014.
[13] M. Mohandes, S. Aliyu, and M. Deriche, “Prototype Arabic Sign Language Recognition using Multi-Sensor Data Fusion of Two Leap Motion Controllers,” pp. 1–6, 2015.
[14] A. S. Elons, M. Ahmed, H. Shedid, and M. F. Tolba, “Arabic Sign Language Recognition Using Leap Motion Sensor,” pp. 368–373, 2014.
[15] N. Sugianto and F. Samopa, “Analisa Manfaat Dan Penerimaan Terhadap Implementasi Bahasa Isyarat Indonesia Pada Latar Belakang Komplek Menggunakan Kinect Dan Jaringan Syaraf Tiruan ( Studi Kasus SLB Karya Mulia 1 ),” vol. 01, no. 01, pp. 56–72, 2015.
[16] W. N. Khotimah, R. A. Saputra, N. Suciati, and R. R. Hariadi, “Comparison between Back Propagation Neural Network and Genetic Algorithm Back Propagation Neural Network for Sign Language Recognition,” The International Conference on Science and Information Technology, Yogyakarta, 2015
Downloads
Published
Issue
Section
How to Cite
License
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in JUTI unless they receive approval for doing so from the Editor-in-Chief.
JUTI open access articles are distributed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.