PENGELOMPOKAN MODEL PROSES BERDASARKAN MATRIK SIMILARITAS DENGAN PENDEKATAN SEMANTIK

Authors

  • Bayu Priyambadha Program Studi Teknik Informatika, Program Teknologi Informasi dan Ilmu Komputer, Universitas Brawijaya
  • Riyanarto Sarno Program Studi Teknik Informatika, Fakultas Teknologi Informasi, ITS
Views: 689 Downloads: 559

DOI:

https://doi.org/10.12962/j24068535.v14i2.a569

Abstract

Saat ini, pemanfaatan sebuah sistem informasi berorientasi proses pada sebuah organisasi sangat marak dilakukan. Sistem informasi berorientasi proses bertujuan untuk meningkatkan kinerja sebuah organisasi. Dalam sebuah organisasi berskala besar, model proses yang digunakan untuk mendukung bisnis tidak berjumlah sedikit, melainkan dapat mencapai angka ratusan bahkan hingga ribuan. Repositori model proses adalah sebuah media untuk menyimpan model proses dalam sebuah organisasi. Terdapat permasalahan dalam pengelolaan repositori model proses, antara lain proses perhitungan kesamaan model proses yang masih menggunakan pendekatan kesamaan sintaktik. Pendekatan tersebut membuat proses pengelompokan model proses menjadi kurang optimal. Untuk menjawab permasalahan tersebut, pada penelitian ini dilakukan mekanisme pengelompokan model proses berdasarkan kedekatan derajat kesamaan yang dimiliki tiap model proses. Penghitungan derajat kesamaan dilakukan berdasarkan beberapa matrik kesamaan, antara lain kesamaan titik (node), kesamaan struktur, dan kesamaan perilaku (behavior). Serta perhitungan derajat kesamaan dilakukan dengan menggunakan metode kesamaan arti (semantik). Penggunaan metode kesamaan arti dapat meningkatkan nilai compactness pada kelompok yang dihasilkan dari proses clustering.

Downloads

Download data is not yet available.

References

[1] Aalst, W.M.P.V.D. Process-Aware Information Systems: Design, Enactment, and Analysis

[2] Dijkman, R., La Rosa, M., Reijers H.A. 2011. Managing Large Collections of Business Process Models – Current Techniques and Chaleenges. Computers in Industry, 6 (2), pp. 91-97.

[3] Dongen, B.F.v., Dijkman, R.M., Mendling, J. 2008. Measuring Similarity between Business Process Models. CAiSE 2008 Montpellier. Pp. 450-464.

[4] Dijkman, R., Dumas, M., Garcia-Banuelos, L. 2009. Graph Matching Algorithms for Business Process Model Similarity Search. 7th International Conference, BPM 2009. Pp. 48-63.

[5] Dijkman, R., Dumas, M., Dongen, B.v., Kaarik, R., Mendling, J. 2010. Similarity of Business Process Models : Metrics and Evaluation. Information System 36. Pp. 498-516.

[6] Yan, Z., Dijkman R., Grefen, P. 2010. Fast Business Process Similarity Search with Feature-Based Similarity Estimation. OTM 2010, Part I, LNCS 6426, pp. 60–77. Berlin : Springer-Verlag

[7] Jung, J.Y., Bae, J., Liu L. 2008. Hierarchical Clustering of Business Process Models. IEEE International Conference on Service Computing, IEEE Computer Society. Pp. 613-616.

[8] Mendling, J., Dongen, B.V., Aalst, W.V. 2007. On the Degree of Behabioral Similarity between Business Process Models. In proceeding of: 6. Workshop der Gesellschaft für Informatik e.V. (GI) und Treffen ihres Arbeitskreises

[9] Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Pasca, M., Soroa, A. 2009. A Study on Similarity and Relatedness Using Distributional and WordNetbased Approaches. Association for Computational Linguistics. Pp. 19-27

[10]Sarno, R., Ginardi, H., Pamungkas, E. W., & Sunaryono, D. 2013. Clustering of ERP Business Process Fragments, 2–7.

[11]Rousseeuw, P. J. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. doi:10.1016/0377-0427(87)90125-7

[12]G. a. Miller, “WordNet: a lexical database for English,” Commun. ACM, vol. 38, no. 11, pp. 39–41, 1995.

Downloads

Published

2016-07-01

Issue

Section

Articles

How to Cite

[1]
B. Priyambadha and R. Sarno, “PENGELOMPOKAN MODEL PROSES BERDASARKAN MATRIK SIMILARITAS DENGAN PENDEKATAN SEMANTIK”, JUTI, vol. 14, no. 2, pp. 171–179, Jul. 2016, doi: 10.12962/j24068535.v14i2.a569.