HYBRID GENETIC ALGORITHMDAN ANT COLONY OPTIMIZATIONUNTUK OPTIMISASI METODE MULTILEVEL IMAGE THRESHOLDING
DOI:
https://doi.org/10.12962/j24068535.v9i2.a36Abstract
Penggunaan genetic algorithm (GA) sebagai metode multilevel image thresholding dalam segmentasi citra dapat memberikan keuntungan seperti kecepatan proses dan penentuan jumlah threshold serta nilai threshold yang tepat. Akan tetapi, genetic algorithm memiliki beberapa kelemahan dimana salah satunya adalah kemungkinan terjadinya konvergensi yang terlalu dini (premature convergence) dan tidak adanya feedback positive yang tidak menjamin solusi global optimal. Penelitian ini mengajukan metode baru Hybrid GA-ACO untuk optimisasi metode multilevel image thresholdingsehingga dapat mengatasi kelemahan tersebut dengan cara menggabungkan GA dan ant colony optimization (ACO). Penggabungan dilakukan dengan menjadikan posisi dan nilai threshold yang didapatkan pada GA sebagai nilai awal untuk proses algoritma ACO. Hasil pengujian dengan citra sintetis dan citra asli menunjukkan nilai cost function, uniformity, dan misclassification error dari metode hybrid GA-ACO lebih baik dibandingkan dengan algoritma awal GA, yaitu rata-rata 98.87% untuk tingkat uniformity dan 97.72% untuk nilai ME. Nilai cost function metode hybrid GA-ACO yang lebih kecil dibandingkan algoritma GA menunjukkan bahwa metode hybrid GA-ACO dapat mencegah konvergensi dini pada algoritma GA. Dari hasil tersebut dapat disimpulkan bahwa metode hybrid GA-ACO yang dikembangkan merupakan suatu metode multilevel image thresholding yang dapat mencegah konvergensi dini sehingga mencapai konvergensi pada solusi optimal yang bersifat global optimum.
Downloads
Downloads
Published
Issue
Section
How to Cite
License
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in JUTI unless they receive approval for doing so from the Editor-in-Chief.
JUTI open access articles are distributed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.