KLASIFIKASI CITRA DENGAN POHON KEPUTUSAN
Abstract
Image classification can be done by using attribute of text that come along with the image, such as file name, size, or creator. Image classification also can be done base on visual content of the image. In this research, we implement a image classification model base on image visual content. The image classification is based on decision tree method that adapt C4.5 algorithm. The decision variable used in the decision tree generation process is image visual features, i.e. color moment order-1, color moment order-2, color moment order-3, entropy, energy, contrast, and homogeneity. The result of this research is an application that can classified image base on the knowledge of the previous classification cases.
Keywords: image classification, decision tree, C4.5 algorithm
Downloads
Downloads
Published
Issue
Section
License
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in JUTI unless they receive approval for doing so from the Editor-in-Chief.
JUTI open access articles are distributed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.











