PENGKATEGORIAN ISI BERITA BERBAHASA INDONESIA MENGGUNAKAN ALGORITMA SYMBOLIC RULE INDUCTION BERBASIS DECISION TREE
DOI:
https://doi.org/10.12962/j24068535.v3i1.a131Abstract
Pengkategorian teks sangat penting demi manajemen dan temu kembali pengetahuan yang ada pada teks tersebut. Pengkategorian teks yang dilakukan secara manual akan menghabiskan banyak waktu dan biaya. Karena itu diperlukan suatu sistem yang mampu mengkategorikan teks secara otomatis.
Penelitian ini berusaha untuk mengkategorikan teks dengan menggunakan algoritma symbolic rule induction berbasis decision tree. Pengkategorian dilakukan untuk berita berbahasa Indonesia. Dari teks berita tersebut, dipilih fitur-fitur yang relevan untuk masing-masing kategori berdasarkan kriteria Information Gain. Dengan menggunakan fitur-fitur tersebut, dibangun decision tree melalui proses induksi. Untuk meningkatkan akurasi decision tree dilakukan proses pruning. Proses selanjutnya adalah menghasilkan aturan-aturan yang ekivalen secara logis dengan decision tree tersebut dengan memanfaatkan sibling criterion.
Algoritma ini diuji coba dengan menggunakan data berita dari situs Detik. Uji coba dilakukan untuk mengetahui pengaruh dari jumlah fitur, jumlah data, dan nilai maksimum suatu fitur terhadap nilai F1 dan waktu komputasi. Hasil uji coba menunjukkan bahwa jumlah fitur dan jumlah data pelatihan yang bertambah cenderung akan meningkatkan nilai F1.
Kata Kunci : Text Categorization, DTree, Sibling Criterion, Decision Tree, Symbolic Rule Induction
Downloads
Downloads
Published
Issue
Section
How to Cite
License
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in JUTI unless they receive approval for doing so from the Editor-in-Chief.
JUTI open access articles are distributed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.