Enhancing Face Detection Performance In 360-Degree Video Using Yolov8 with Equirectangular Augmentation Techniques

Authors

  • Rizky Damara Ardy Institut Teknologi Sepuluh Nopember
  • Anny Yuniarti Institut Teknologi Sepuluh Nopember
  • Christy Atika Sari Universitas Dian Nuswantoro

DOI:

https://doi.org/10.12962/j24068535.v23i1.a1255

Abstract

This study aims to enhance face detection performance in 360-degree videos by utilizing advanced image augmentation techniques with the YOLOv8 algorithm, which is effective for real-time object detection. Acknowledging the unique challenges posed by equirectangular projection, this research introduces a novel equirectangular augmentation method specifically designed for this medium. Our findings demonstrate a remarkable 1.346% improvement in detection accuracy in Equirectangular Projection (ERP) settings compared to default YOLOv8 augmentation strategies. This significant enhancement not only addresses the geometric distortions inherent in panoramic video formats but also emphasizes the critical need for tailored augmentation approaches to improve face detection in complex environments. By showcasing the effectiveness of these customized methods, this research contributes to the growing field of deep learning applications for immersive video technologies, with implications for sectors like security, virtual reality, and interactive media. Ultimately, this work highlights the potential of innovative augmentation techniques to ensure robust face detection in challenging visual contexts.

Author Biographies

  • Rizky Damara Ardy, Institut Teknologi Sepuluh Nopember

    Departement of Informatics

  • Anny Yuniarti, Institut Teknologi Sepuluh Nopember
    Departement of Informatics

References

J. K. Author, “Title of chapter in the book,” in Title of His Published Book, xth ed. City of Publisher, Country if notfdksj Xu, C. Li, S. Zhang, and P. L. Callet, “Stateofthe-art in 360° video/image processing: Perception, assessment and compression,” IEEE Journal of Selected Topics in Signal Pro-cessing, vol. 14, no. 1, pp. 5–26, Jan. 2020, ISSN: 1941-0484. DOI: 10.1109/JSTSP.2020. 2966864.

[C.-Y. Yang and H. H. Chen, “Efficient face detection in the fisheye image domain,” IEEE Transactions on Image Processing, vol. 30, pp. 5641–5651, 2021. DOI: 10.1109/TIP.2021.3087400.

. Fu, S. Ranjbar Alvar, I. Bajic, and R. Vaughan, “Fddb-360: Face detection in 360-degree fisheye images,” in 2019 IEEE Conference on Multime-dia Information Processing and Retrieval (MIPR), 2019, pp. 15– 19. DOI: 10.1109/MIPR.2019.00011.

R. G. d. A. Azevedo, N. Birkbeck, F. De Simone, I. Janatra, B. Adsumilli, and P. Frossard, “Visual distortions in 360° videos,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 8, pp. 2524–2537, 2020. DOI: 10 . 1109 / TCSVT. 2019 . 2927344.

W. Yang and Z. Jiachun, “Real-time face detection based on yolo,” in 2018 1st IEEE International Conference on Knowledge Innovation and In-vention (ICKII), 2018, pp. 221–224. DOI: 10.1109/ICKII.2018.8569109.

X. Wang, K. Wang, and S. Lian, “A survey on face data augmentation for the training of deep neural networks,” Neural Computing and Applica-tions, vol. 32, no. 19, pp. 15 503–15 531, Mar. 2020, ISSN: 1433-3058. DOI: 10 . 1007 / s00521 - 020 - 04748 - 3. [Online]. Available: http://dx.doi.org/10.1007/s00521-020-04748-3.

S. Yang, P. Luo, C. C. Loy, and X. Tang, Wider face: A face detection benchmark, 2015. arXiv: 1511.06523 [cs.CV].

C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” Journal of Big Data, vol. 6, no. 1, p. 60, 2019, ISSN: 2196-1115. DOI: 10.1186/s40537-019-0197-0. [Online]. Available: https: //doi.org/10.1186/s40537-019-0197-0.

M. D. Bloice, C. Stocker, and A. Holzinger, Augmentor: An image augmentation library for machine learning, 2017. arXiv: 1708.04680 [cs.CV].

M. Sohan, T. Sai Ram, and C. V. Rami Reddy, “A review on yolov8 and its advancements,” in Data Intelligence and Cognitive Informatics, I. J. Jacob, S. Piramuthu, and P. Falkowski-Gilski, Eds., Singapore: Springer Nature Singapore, 2024, pp. 529–545, ISBN: 978-981-99-7962-2.

L. Li, K. Jamieson, A. Rostamizadeh, et al., A system for massively parallel hyperparameter tuning, 2020. arXiv: 1810 . 05934 [cs.LG]. [Online]. Available: https://arxiv.org/abs/1810.05934.

B. Wang, A parallel implementation of computing mean average precision, 2022. arXiv: 2206.09504 [cs.CV]. [Online]. Available: https://arxiv.org/abs/2206.09504.

J. Du, “Understanding of object detection based on cnn family and yolo,” Journal of Physics: Conference Series, vol. 1004, no. 1, p. 012 029, Apr. 2018. DOI: 10. 1088/1742- 6596/1004/1/012029. [Online]. Available: https://dx.doi.org/10.1088/1742-6596/1004/1/012029.

Downloads

Published

2025-02-25

Issue

Section

Articles