Mandibular Image Segmentation and 3d Reconstruction using U-Net Model

Authors

  • Mambaul Izzi Institut Teknologi Sepuluh Nopember
  • Chastine Fatichah Institut Teknologi Sepuluh Nopember
  • Hadziq Fabroyir Institut Teknologi Sepuluh Nopember

DOI:

https://doi.org/10.12962/j24068535.v23i1.a1245

Abstract

Penelitian ini bertujuan untuk meningkatkan presisi dan efisiensi dalam segmentasi citra mandibula dan rekonstruksi 3D menggunakan model U-Net. Segmentasi otomatis dengan U-Net menangani tantangan metode manual yang memakan waktu. Struktur Encoder-Decoder pada U-Net memungkinkan pembelajaran fitur citra medis yang kompleks dengan akurasi tinggi, menghasilkan segmentasi yang konsisten dan presisi. Hasil penelitian menunjukkan bahwa Res U-Net mencapai performa segmentasi yang unggul dengan Dice Similarity Coefficient (DSC) sebesar 95,37%, meskipun memerlukan waktu komputasi yang lebih lama. Sementara itu, U-Net standar menawarkan efisiensi komputasi yang lebih tinggi dan cocok untuk aplikasi real-time meskipun akurasinya sedikit lebih rendah. Integrasi segmentasi dengan rekonstruksi 3D meningkatkan visualisasi anatomi mandibula, memperbaiki efektivitas perencanaan bedah, serta menyediakan alat simulasi interaktif untuk perawatan personal dan pelatihan profesional. Penggunaan standar DICOM memfasilitasi aksesibilitas antar perangkat medis, mendukung interoperabilitas sistem perawatan kesehatan. Studi ini menyimpulkan bahwa Res U-Net optimal untuk kebutuhan presisi tinggi, sedangkan U-Net lebih cocok untuk aplikasi dengan pemrosesan cepat. Temuan ini diharapkan dapat memajukan teknologi segmentasi dan visualisasi medis yang andal dan efektif dalam praktik klinis.

References

Z. Huang, T. Xia, J. Kim, L. Zhang, and B. Li, “Combining CNN with Pathological Information for the Detection of Transmissive Lesions of Jawbones from CBCT Images,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 2972–2975, 2021, doi: 10.1109/EMBC46164.2021.9630692.

I. B. Pəvəloiu, A. Vasiləţeanu, N. Goga, I. Marin, C. Ilie, A. Ungar, and I. Pətraşcu, “3D dental reconstruction from CBCT data,” 2014 Int. Symp. Fundam. Electr. Eng. ISFEE 2014, 2015, doi: 10.1109/ISFEE.2014.7050617.

S. Saluja, M. C. Trivedi, and A. K. Dubey, “U-Net Variants for Brain Tumor Segmentation: Performance and Limitations,” 2023 Int. Conf. Comput. Intell. Commun. Technol. Networking, CICTN 2023, pp. 612–616, 2023, doi: 10.1109/CICTN57981.2023.10141477.

P. U. Augmented, “Nextmed: Automatic Imaging Segmentation, 3D Reconstruction, and 3D Model Visualization Platform Using Augmented and Virtual Reality,” 2020.

B. Woo and M. Lee, “Comparison of tissue segmentation performance between 2D U-Net and 3D U-Net on brain MR Images,” 2021 Int. Conf. Electron. Information, Commun. ICEIC 2021, 2021, doi: 10.1109/ICEIC51217.2021.9369797.

R. Joshi, “Segmentation of Teeth in Panoramic X-ray Image Using U-net Algorithm,” 2024 3rd Int. Conf. Artif. Intell. Internet Things, AIIoT 2024, no. AIIoT, pp. 1–6, 2024, doi: 10.1109/AIIoT58432.2024.10574786.

W. F. Chen, H. Y. Ou, K. H. Liu, Z. Y. Li, C. C. Liao, S. Y. Wang, W. Huang, Y. F. Cheng, and C. T. Pan, “In-series u-net network to 3d tumor image reconstruction for liver hepatocellular carcinoma recognition,” Diagnostics, vol. 11, no. 1, 2021, doi: 10.3390/diagnostics11010011.

V. S. Nguyen, M. H. Tran, and H. M. Quang Vu, “An Improved Method for Building A 3D Model from 2D DICOM,” Proc. - 2018 Int. Conf. Adv. Comput. Appl. ACOMP 2018, pp. 125–131, 2018, doi: 10.1109/ACOMP.2018.00027.

A. Fajar, R. Sarno, C. Fatichah, and A. Fahmi, “Reconstructing and resizing 3D images from DICOM files,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, pp. 3517–3526, 2022, doi: 10.1016/j.jksuci.2020.12.004.

A. Sha, E. R. Adwaith Krishna, D. S. Menon, and T. Anjali, “Enhancing Segmentation Efficiency: A 2D U-Net Approach with 3D-to-2D Conversion for Medical Image Analysis,” 7th Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2023 - Proc., no. Iceca, pp. 206–211, 2023, doi: 10.1109/ICECA58529.2023.10395625.

A. Gamal, K. Bedda, N. Ashraf, S. Ayman, M. Abdallah, and M. A. Rushdi, “Brain Tumor Segmentation using 3D U-Net with Hyperparameter Optimization,” NILES 2021 - 3rd Nov. Intell. Lead. Emerg. Sci. Conf. Proc., pp. 269–272, 2021, doi: 10.1109/NILES53778.2021.9600556.

K. Fatma, I. Benaissa, A. Zitouni, and B. Zinne-Eddine, “Assessing the Performance of U-Net in 3D Medical Image Segmentation,” Proc. - 8th IEEE Int. Conf. Image Signal Process. their Appl. ISPA 2024, pp. 1–6, 2024, doi: 10.1109/ISPA59904.2024.10536844.

H. Mzoughi, I. Njeh, M. Ben Slima, and A. Benhamida, “Glioblastomas brain Tumor Segmentation using Optimized U-Net based on Deep Fully Convolutional Networks (D-FCNs),” 2020 Int. Conf. Adv. Technol. Signal Image Process. ATSIP 2020, pp. 1–6, 2020, doi: 10.1109/ATSIP49331.2020.9231681.

S. Chihati and D. Gaceb, “A review of recent progress in deep learning-based methods for MRI brain tumor segmentation,” 2020 11th Int. Conf. Inf. Commun. Syst. ICICS 2020, pp. 149–154, 2020, doi: 10.1109/ICICS49469.2020.239550.

A. Bhattacharjee, R. Murugan, T. Goel, and B. Soni, “Semantic segmentation of lungs using a modified U-Net architecture through limited Computed Tomography images,” 2021 Adv. Commun. Technol. Signal Process. ACTS 2021, pp. 1–6, 2021, doi: 10.1109/ACTS53447.2021.9708190.

N. M. Aboelenein, P. Songhao, A. Koubaa, A. Noor, and A. Afifi, “HTTU-Net: Hybrid Two Track U-Net for Automatic Brain Tumor Segmentation,” IEEE Access, vol. 8, pp. 101406–101415, 2020, doi: 10.1109/ACCESS.2020.2998601.

Z. Zhou, Y. Chen, A. He, X. Que, K. Wang, R. Yao, and T. Li, “NKUT: Dataset and Benchmark for Pediatric Mandibular Wisdom Teeth Segmentation,” IEEE J. Biomed. Heal. Informatics, vol. 28, no. 6, pp. 3523–3533, 2024, doi: 10.1109/JBHI.2024.3383222.

Downloads

Published

2025-02-25

Issue

Section

Articles