SENTIMENT ANALYSIS ON E-LEARNING UNIVERSITY XYZ WITH NAÏVE BAYES CLASSIFIER METHOD
DOI:
https://doi.org/10.12962/j24068535.v21i2.a1147Abstract
The covid-19 pandemic forced students and lecturers to carry out teaching and learning from home. Therefore, XYZ University focuses its students on using e-learning. E-learning that has been running and used by students must be evaluated, so that teaching and learning activities can run well. Evaluation can be done by collecting opinions based on the features of XYZ University E-learning on students through questionnaires. All opinions can be analyzed using classification method called Naïve Bayes and Support Vector Machine for comparison. The research started by collecting data, preprocessing data, labeling using polarity, calculating the frequency that often from each e-learning feature, and calculating the accuracy of the Complement Naïve Bayes model and Support Vector Machine model. The research results conducted on 1995 dataset testing, in student opinions with 1289 positive values, 372 negative values, and 364 neutral values. Reinforced by the comparison result of Complement Naive Bayes and Support Vector Machine. When Complement Naïve Bayes model accuracy of 89%, recall 85,3%, and the f1-score 85%. While Support Vector Machine accuracy is lower 11,1% than Complement Naïve Bayes Model with only 74,4%. These results indicate that of the 12 features on XYZ University E-learning, 8 features have a good opinion, 2 features have a bad opinion, and 2 feature have a neutral opinion.
References
K. Khan et al., “Urdu sentiment analysis,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 9, pp. 646–651, 2018, doi: 10.14569/ijacsa.2018.090981.
Kementerian Pendidikan Dan Kebudayaan, “Pedoman Penyelenggaraan Belajar Dari Rumah Dalam Masa Darurat Penyebaran Corona Virus Disease (Covid-19),” Surat Edaran Nomor 15 Tahun 2O2O, no. 021, pp. 1–20, 2020.
A. S. AJIATMOJO, “Penggunaan E-Learning Pada Proses Pembelajaran Daring,” Teach. J. Inov. Kegur. dan Ilmu Pendidik., vol. 1, no. 3, pp. 229–235, 2021, doi: 10.51878/teaching.v1i3.525.
A. G. Prawiyogi, T. L. Sadiah, A. Purwanugraha, and P. N. Elisa, “Penggunaan Media Big Book untuk Menumbuhkan Minat Membaca di Sekolah Dasar,” J. Basicedu, vol. 5, no. 1, pp. 446–452, 2021, doi: 10.31004/basicedu.v5i1.787.
B. A. Sevsa and M. D. R Wahyudi, “Analisis Sentimen pada Indeks Kinerja Dosen Fakultas SAINTEK UIN Sunan Kalijaga Menggunakan Naive Bayes Classifier,” J. Buana Inform., vol. 10, no. 2, p. 112, 2019, doi: 10.24002/jbi.v10i2.2250.
C. Prianto et al., “Sentimen Analisis Terhadap Pembelajaran Jarak Jauh Menggunakan Metode Naïve Bayes Classifier dan Lexicon Based,” vol. 14, no. 2, pp. 79–87, 2021.
I. Fakhri and R. F. Umbara, “Analisis Sentimen pada Kuisioner Kepuasan Terhadap Layanan dan Fasilitas Kampus Universitas Dengan Menggunakan Klasifikasi Support Vector Machine (SVM),” e-Proceeding Eng., vol. 6, no. 2, 2019.
R. R. Putra, M. E. Johan, and E. R. Kaburuan, “A naïve bayes sentiment analysis for fintech mobile application user review in Indonesia,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 8, no. 5, pp. 1856–1860, 2019, doi: 10.30534/ijatcse/2019/07852019.
A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,” J. Teknoinfo, vol. 14, no. 2, p. 115, 2020, doi: 10.33365/jti.v14i2.679.
B. M. Pintoko and K. M. L., “Analisis Sentimen Jasa Transportasi Online pada Twitter Menggunakan Metode Naive Bayes Classifier,” e-Proceeding Eng., vol. 5, no. 3, pp. 8121–8130, 2018.
N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, and S. Samudi, “Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, p. 293, 2020, doi: 10.24114/cess.v5i2.18186.
M. Ichwan, I. A. Dewi, and Z. M. S, “Klasifikasi Support Vector Machine (SVM) Untuk Menentukan TingkatKemanisan Mangga Berdasarkan Fitur Warna,” MIND J., vol. 3, no. 2, pp. 16–23, 2019, doi: 10.26760/mindjournal.v3i2.16-23.
A. Firmansyah Sulaeman, A. Afif Supianto, and F. Abdurrachman Bachtiar, “Analisis Sentimen Opini Mahasiswa Terhadap Saran Evaluasi Kinerja Dosen Menggunakan TF-IDF dan Support Vector Machine,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. , vol. 3, no. 6, pp. 5647–5655, 2019, [Online]. Available: http://j-ptiik.ub.ac.id.
A. Zein and E. Suharyanto, “Sentimen Analisis Pada Komentar Pendek Evaluasi Dosen Oleh Mahasiswa (Edom) Program Studi Sistem Informasi Universitas …,” J. Ilmu Komput., vol. V, no. 01, 2022, [Online]. Available: https://jurnal.pranataindonesia.ac.id/index.php/jik/article/view/113%0Ahttps://jurnal.pranataindonesia.ac.id/index.php/jik/article/download/113/66
Downloads
Published
Issue
Section
License
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in JUTI unless they receive approval for doing so from the Editor-in-Chief.
JUTI open access articles are distributed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.