PENERAPAN NAIVE BAYES PADA INTRUSION DETECTION SYSTEM DENGAN DISKRITISASI VARIABEL
DOI:
https://doi.org/10.12962/j24068535.v13i2.a487Abstract
Intrusion Detection System (IDS) merupakan sebuah perangkat lunak atau perangkat keras yang dapat digunakan un-tuk mendeteksi adanya aktivitas yang tidak wajar dalam jaringan. Teknik data mining telah banyak diterapkan dalam proses deteksi seperti decision tree, naive bayes, algoritma genetika, dan teknik machine learning lainnya. IDS membutuh-kan performansi yang relatif cepat dengan tingkat false positif yang rendah sehingga hal ini menjadi masalah yang menarik untuk dipecahkan. Penerapan algoritma naive bayes pada masalah ini dapat dilakukan namun kelemahan dari naive bayes sendiri adalah memerlukan atribut dengan nilai diskrit sehingga diperlukan proses diskritisasi untuk merubah atribut kontinu kedalam bentuk diskrit. Pada penelitian ini akan dibahas mengenai penerapan naive bayes classifier dengan menggunakan pemilihan atribut berdasarkan pada korelasi serta preprocessing data dengan diskritisasi dengan menggunakan metode mean/standar deviasi untuk atribut kontinu dengan menggunakan 3-interval dan 5-interval. Hasil percobaan menunjukan bahwa penerapan naive bayes pada klasifikasi data yang telah melewati proses diskritisasi mampu memberikan akurasi hingga 89% dengan running time rata-rata adalah 31 detik.
Downloads
Downloads
Published
Issue
Section
How to Cite
License
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in JUTI unless they receive approval for doing so from the Editor-in-Chief.
JUTI open access articles are distributed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.