MULTI-DOCUMENT SUMMARIZATION BASED ON SENTENCE CLUSTERING IMPROVED USING TOPIC WORDS
DOI:
https://doi.org/10.12962/j24068535.v12i2.a317Abstract
Informasi dalam bentuk teks berita telah menjadi salah satu komoditas yang paling penting dalam era informasi ini. Ada banyak berita yang dihasilkan sehari-hari, tetapi berita-berita ini sering memberikan konten kontekstual yang sama dengan narasi berbeda. Oleh karena itu, diperlukan metode untuk mengumpulkan informasi ini ke dalam ringkasan sederhana. Di antara sejumlah subtugas yang terlibat dalam peringkasan multi-dokumen termasuk ekstraksi kalimat, deteksi topik, ekstraksi kalimat representatif, dan kalimat rep-resentatif. Dalam tulisan ini, kami mengusulkan metode baru untuk merepresentasikan kalimat ber-dasarkan kata kunci dari topic teks menggunakan Latent Dirichlet Allocation (LDA). Metode ini terdiri dari tiga langkah dasar. Pertama, kami mengelompokkan kalimat di set dokumen menggunakan kesamaan histogram pengelompokan (SHC). Selanjutnya, peringkat cluster menggunakan klaster penting. Terakhir, kalimat perwakilan yang dipilih oleh topik diidentifikasi pada LDA. Metode yang diusulkan diuji pada dataset DUC2004. Hasil penelitian menunjukkan rata-rata 0,3419 dan 0,0766 untuk ROUGE-1 dan ROUGE-2, masing-masing. Selain itu, dari pembaca prespective, metode kami diusulkan menyajikan pengaturan yang koheren dan baik dalam memesan kalimat representatif, sehingga dapat mempermudah pemahaman bacaan dan mengurangi waktu yang dibutuhkan untuk membaca ringkasan.
Downloads
Downloads
Published
Issue
Section
How to Cite
License
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in JUTI unless they receive approval for doing so from the Editor-in-Chief.
JUTI open access articles are distributed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.