MULTI-DOCUMENT SUMMARIZATION BASED ON SENTENCE CLUSTERING IMPROVED USING TOPIC WORDS

Indra Lukmana, Daniel Swanjaya, Arrie Kurniawardhani, Agus Zainal Arifin, Diana Purwitasari

Abstract


Informasi dalam bentuk teks berita telah menjadi salah satu komoditas yang paling penting dalam era informasi ini. Ada banyak berita yang dihasilkan sehari-hari, tetapi berita-berita ini sering memberikan konten kontekstual yang sama dengan narasi berbeda. Oleh karena itu, diperlukan metode untuk mengumpulkan informasi ini ke dalam ringkasan sederhana. Di antara sejumlah subtugas yang terlibat dalam peringkasan multi-dokumen termasuk ekstraksi kalimat, deteksi topik, ekstraksi kalimat representatif, dan kalimat rep-resentatif. Dalam tulisan ini, kami mengusulkan metode baru untuk merepresentasikan kalimat ber-dasarkan kata kunci dari topic teks menggunakan Latent Dirichlet Allocation (LDA). Metode ini terdiri dari tiga langkah dasar. Pertama, kami mengelompokkan kalimat di set dokumen menggunakan kesamaan histogram pengelompokan (SHC). Selanjutnya, peringkat cluster menggunakan klaster penting. Terakhir, kalimat perwakilan yang dipilih oleh topik diidentifikasi pada LDA. Metode yang diusulkan diuji pada dataset DUC2004. Hasil penelitian menunjukkan rata-rata 0,3419 dan 0,0766 untuk ROUGE-1 dan ROUGE-2, masing-masing. Selain itu, dari pembaca prespective, metode kami diusulkan menyajikan pengaturan yang koheren dan baik dalam memesan kalimat representatif, sehingga dapat mempermudah pemahaman bacaan dan mengurangi waktu yang dibutuhkan untuk membaca ringkasan.

Full Text:

PDF


DOI: http://dx.doi.org/10.12962/j24068535.v12i2.a317

Refbacks

  • There are currently no refbacks.