PENGGUNAAN ANALISA FAKTOR UNTUK KLASIFIKASI CITRA PENGINDERAAN JAUH MULTISPEKTRAL
Abstract
Pada penelitian ini, metode transformasi yang digunakan adalah Analisa Faktor (Factor Analysis / Canonical Analysis). Metode ini lebih baik bila dibandingkan dengan metode Principal Component Analysis (PCA). Sebab, Analisa Faktor mentransformasi sekaligus memilah cluster dalam feature space. Tiga proses utama dalam penelitian ini yaitu split, merge, dan partitional K-means clustering. Citra multispektral ditransformasi menjadi satu dimensi. Histogram satu dimensi displit dengan pemilihan puncak kurva. Merge menggabungkan cluster hasil split tersebut. Cluster yang berdekatan digabungkan menjadi cluster baru. K-means clustering digunakan untuk mendeteksi lokasi pusat cluster (prototipe cluster) dan sekaligus mengelompokkan pixel ke setiap cluster.
Hasil penelitian ini dibandingkan dengan hasil algoritma clustering yang proses transformasinya menggunakan PCA. Hasil perbandingan membuktikan bahwa clustering yang proses transformasinya menggunakan Analisa Faktor menghasilkan heterogenitas antar cluster lebih tinggi (Tr(SB) meningkat antara 0.83 % sampai 19.58 %). Adapun kekompakan tiap cluster tidak selalu optimal. Hal ini sangat mungkin disebabkan jumlah kelas sampel kurang banyak dan pengambilan sampel di tiap kelas kurang bervariasi.
Kata kunci: Analisa Faktor, complete link, K-means clustering, Scatter within class, Scatter between class
Full Text:
PDFDOI: http://dx.doi.org/10.12962/j24068535.v1i1.a91
Refbacks
- There are currently no refbacks.