PENENTUANT JUMLAH CLUSTER OPTIMUM PADA SEGMEN RUTE PENERBANGAN MENGGUNAKAN DATA AUTOMATIC DEPENDENT SURVEILLANCE-BROADCAST
Abstract
Terdapat beberapa titik acuan dalam satu rute penerbangan untuk keperluan navigasi yang disebut waypoint. Pada penelitian ini penulis melakukan segmentasi untuk membagi satu rute penerbangan (Surabaya-Palu) menjadi 7 segmen yang terdiri dari 8 waypoint, dengan membuat garis imajiner secara tegak lurus melewati masing-masing waypoint. Pada tiap segmen dilakukan analisa terkait lokasi yang paling sering dilalui menggunakan pendekatan clustering.
Dalam penelitian ini penulis menggunakan algoritma clustering K-means dengan optimasi centroid yang mengimplementasikan algoritma Ant Lion Optimizer (ALO) atau disebut dengan K-means-ALO. Jumlah cluster ditentukan sebelumnya, kemudian dilakukan validasi pengelompokan internal dengan menggunakan silhouette index. Hasil metode pengelompokan diuji nilai performansinya. Hasil akhir dari jumlah cluster yang sudah ditentukan diambil nilai validitas cluster terbaik yaitu jumlah cluster yang optimum pada tiap segmen area penerbangan.
Pengujian dilakukan dengan membandingkan nilai silhouette index untuk setiap percobaan jumlah cluster terhadap kedua metode yaitu K-means dan K-means-ALO. Pada uji coba yang dilakukan, metode optimasi yang diusulkan menghasilkan validitas cluster yang lebih baik sesuai nilai silhouette index pada tiga segmen, yaitu segmen 2, 3, dan 5 akan tetapi signifikan di semua segmen berdasarkan uji statistik Analysis of Variance (ANOVA) dan uji lanjut Least Significant Difference (LSD).
Full Text:
PDFReferences
M.Y. Pusadan, J. L. Buliali, and R. V. H. Ginardi, “Anomaly detection of flight routes through optimal waypoint,” J. Phys. Conf. Ser., vol. 755, p. 011001, hal. 1-8, 2016.
X. Tang, J. Gu, Z. Shen, and P. Chen, “A flight profile clustering method combining twed with K-means algorithm for 4D trajectory prediction,” dalam Integr. Commun. Navig. Surveill. Conf., Herdon, VA, USA, 2015, hal. S3-1-S3-9.
S. Mirjalili, “The ant lion optimizer,” ScienceDirect Adv. Eng. Softw., vol. 83, hal. 80–98, Mei. 2015.
S. K. Majhi and S. Biswal, “ Optimal cluster analysis using hybrid K-means and Ant Lion Optimizer,” ScienceDirect Karbala Int. J. Mod. Sci.,vol. 4,no 1,hal. 347-392, Des. 2018.
Y. Liu, H. Xiong and Z. Li, “Understanding and Enhancement of Internal Clustering Validation Measures,” IEEE Transactions on Cybernetics, vol. 43, no. 3, hal. 982–994, Jun. 2013.
D. L. Davies and D. W. Bouldin, “A Cluster Separation Measure,” IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-1, no. 2, hal. 224–227, Apr. 1979.
T. Calinski and J. Harabasz, “A dendrite method for cluster analysis,” Commun. Stat. - Theory Methods, vol. 3, no. 1, hal. 1–27, 1974.
I P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of cluster analysis,” ScienceDirect J. Comput. Appl. Math., vol. 20, hal. 53–65, Nov. 1987.
F. Martel, R. R. Schultz, W. H. Semke, Z. Wang, and M. Czarnomski, “Unmanned Aircraft Systems Sense andAvoid Avionics Utilizing ADS-B Transceiver,” dalam AIAA Infotech@Aerospace, Seattle, Washington, 2009, hal. 1–8.
M. Gariel, F. Kunzi, and R. J. Hansman, “An algorithm for conflict detection in dense traffic using ADS-B,” dalam IEEE/AIAA 30th Digital Avionics Systems Conference, 2011, hal. 1–12.
M. Orefice, V. D. Vito, F. Corraro, G. Fasano, and D. Accardo, “Aircraft conflict detection based on ADS-B surveillance data,”dalam IEEE Metrology for Aerospace (MetroAeroSpace), 2014, hal. 277–282.
K. Y. Baek and H. C. Bang, “ADS-B based Trajectory Prediction and Conflict Detection for Air Traffic Management,” Int. J. Aeronaut. Sp. Sci., vol. 13, no. 3, hal. 377–385, 2012.
A. K. Jain, “Data clustering: 50 years beyond K-means,” ScienceDirect Pattern Recognit. Lett., vol. 31, no. 8, hal. 651–666, Jun. 2010.
L. J. Deborah, R. Baskaran, and A. Kannan, “A Survey on Internal Validity Measure for Cluster Validation,” Int. J. Comput. Sci. Eng. Surv., vol. 1, no. 2, hal. 85–102, Nov. 2010.
A. Vij and P. Khandnor, “Validity of internal cluster indices,” dalam Int. Conf. Comput. Syst. Inf. Technol. Sustain. Solut. CSITSS, 2016, hal. 388–395.
J. Miller and P. Haden, “Analysis of Variance,” dalam Statistical Analysis with The General Linear Model, San Fransisco, USA, 2006, bab. I, hal. 7–117.
R. a. Fisher, "The Principles of Experimentation Illustrated by A Psycho-Physical Experiment", dalam The Design of Experiment.pdf, London, 1935, bab. II, hal.13-26.
DOI: http://dx.doi.org/10.12962/j24068535.v18i1.a902
Refbacks
- There are currently no refbacks.