NOISE DETECTION IN SOFTWARE REQUIREMENTS SPECIFICATION DOCUMENT USING SPECTRAL CLUSTERING

Patricia Gertrudis Manek, Daniel Siahaan

Abstract


Requirements engineering phase in software development resulting in a SRS (Software Requirements Specification) document. The use of natural language approach in generating such document has some drawbacks that caused 7 common mistakes among the engineer which had been formulated by Meyer as "The 7 sins of specifier". One of the 7 common mistakes is noise. This study attempted to detect noise in software requirements with spectral clustering. The clustering algorithm working on fewer dimensions compared to others. The resulting kappa coefficient is 0.4426. The result showed that the consistency between noise prediction and noise assessment made by three annotators is still low.


Full Text:

PDF

References


B. Boehm and V. R. Basili, “Software Defect Reduction Top 10 List,” Computer (Long. Beach. Calif)., vol. 34, no. 1, pp. 135–137, 2001.

D. Siahaan, Analisa Kebutuhan dalam Rekayasa Perangkat Lunak, 1st ed. Yogyakarta: Penerbit Andi, 2012.

A. Rossi, “Incentives in managerial compensation: a survey of experimental research,” ROCK Work. Pap., 1999.

B. Meyer, “on Formalism in Specifications.,” IEEE Softw., vol. 2, no. 1, pp. 6–26, 1985.

W. Purnomo and D. O. Siahaan, “Pendeteksian Overspesification Pada Dokumen Spesifikasi Kebutuhan Perangkat Lunak,” J. Inspir., vol. 7, no. 1, pp. 1–9, Jun. 2017.

D. Enda and D. Siahaan, “Rekomendasi Perbaikan Pernyataan Kebutuhan yang Rancu dalam Spesifikasi Kebutuhan Perangkat Lunak Menggunakan Teknik Berbasis Aturan,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 2, p. 207, May 2018.

F. V. Sari Sahadi, D. O. Siahaan, and U. L. Yuhana, “PENDETEKSIAN ISTILAH BERBEDA PADA DOKUMEN SPESIFIKASI KEBUTUHAN PERANGKAT LUNAK (SKPL),” SCAN - J. Teknol. Inf. dan Komun., vol. 10, no. 3, pp. 9–16, 2015.

D. Siahaan and I. Umami, “Natural Language Processing for Detecting Forward Reference in a Document,” J. Technol. Sci., vol. 22, pp. 138–142, 2011.

L. Sunitha, M. B. Raju, and B. S. Srinivas, “A Comparative Study between Noisy Data and Outlier Data in Data Mining,” pp. 1–3, 2013.

P. Gelu, R. Sarno, and D. Siahaan, “Requirements Association Extraction based on Use Cases Diagram,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 9, no. 1, pp. 11–19, May 2018.

M. Montes-y-gómez, A. F. Gelbukh, and A. López-lópez, “Detecting Deviations in Text Collections: An Approach Using Conceptual Graphs,” Mex. Int. Conf. Artif. Intell., pp. 176–184, 2002.

X. Cai, R. Zhang, D. Gao, and W. Li, “Simultaneous Clustering and Noise Detection for Theme-based Summarization,” Proc. 5th Int. Jt. Conf. Nat. Lang. Process., pp. 491–499, 2011.

Y. Zhou, H. Yu, and X. Cai, “A Novel k-Means Algorithm for Clustering and Outlier Detection,” 2009 Second Int. Conf. Futur. Inf. Technol. Manag. Eng., pp. 476–480, 2009.

A. Puspaningrum, D. Siahaan, and C. Fatichah, “Mobile App Review Labeling Using LDA Similarity and Term Frequency-Inverse Cluster Frequency (TF-ICF),” in 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE), 2018, pp. 365–370.

R. J. G. B. Campello, D. Moulavi, A. Zimek, and J. Sander, “Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection,” ACM Trans. Knowl. Discov. Data, 2015.

B. Perozzi, L. Akoglu, P. Iglesias Sánchez, and E. Müller, “Focused clustering and outlier detection in large attributed graphs,” in Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’14, 2014.

G. Gan and M. K. P. Ng, “k-means clustering with outlier removal,” Pattern Recognit. Lett., 2017.

S. Jiang and Q. An, “Clustering-Based Outlier Detection Method,” 2008 Fifth Int. Conf. Fuzzy Syst. Knowl. Discov., pp. 429–433, 2008.

R. Pamula, J. K. Deka, and S. Nandi, “An Outlier Detection Method Based on Clustering,” 2011 Second Int. Conf. Emerg. Appl. Inf. Technol., pp. 253–256, 2011.

G. Gan and M. K. P. Ng, “K-Means Clustering With Outlier Removal,” Pattern Recognit. Lett., vol. 90, pp. 8–14, 2017.

Z. Li, J. Liu, S. Chen, and X. Tang, “Noise Robust Spectral Clustering,” Comput. Vision, 2007. ICCV 2007. IEEE 11th Int. Conf., pp. 1–8, 2007.

J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educ. Psychol. Meas., vol. 03, 1960.




DOI: http://dx.doi.org/10.12962/j24068535.v17i1.a771

Refbacks

  • There are currently no refbacks.