EKSTRAKSI KATA KUNCI BERDASARKAN HIPERNIM DENGAN INISIALISASI KLASTER MENGGUNAKAN FUZZY ASSOCIATION RULE MINING PADA PENGELOMPOKAN DOKUMEN

Fahrur Rozi, Chastine Fatichah, Diana Purwitasari

Abstract


Pertumbuhan dunia digital dalam dokumen tekstual terutama di World Wide Web mengalami pertumbuhan pesat. Pen-ingkatan dokumen tekstual ini menyebabkan terjadinya penumpukan informasi, sehingga diperlukan sebuah pengorgan-isasian yang efisien untuk pengelolaan dokumen tekstual. Salah satu metode yang dapat mengelompokkan dokumen dengan tepat adalah menggunakan fuzzy association rule. Tahap ekstraksi kata kunci serta tipe fuzzy yang digunakan berpengaruh terhadap kualitas pengelompokan dokumen. Penggunaan hipernim dalam ekstraksi kata kunci untuk mendapatkan suatu klaster label dapat memperluas makna dari klaster label, sehingga dapat diperoleh suatu meaningful klaster label, selain itu ambiguitas dan uncertainties yang terjadi di dalam aturan fuzzy logic systems (FLS) tipe-1 dapat diatasi dengan fuzzy set tipe-2. Penelitian ini mengusulkan sebuah metode yaitu ekstraksi kata kunci berdasarkan hipernim dengan inisialisasi klaster menggunakan fuzzy association rule mining pada pengelompokan dokumen. Metode ini terdiri dari empat tahap, yaitu : preprocessing dokumen, ekstraksi key terms dari hipernim, ekstraksi kandidat klaster, dan konstruksi klaster tree. Pengujian terhadap metode ini dilakukan dengan tiga jenis data berbeda, yaitu Classic, Reuters, dan 20 Newsgroup. Pengujian dilakukan dengan membandingkan nilai overall f-measure dari metode tanpa hipernim (level 0), hipernim level 1, dan hipernim level 2. Berdasarkan pengujian didapatkan bahwa penggunaan hipernim dalam ektraksi kata kunci mampu menghasilkan rata-rata overall f-measure sebesar 0.5783 untuk data classic, 0.4001 untuk data reuters, dan 0.5269 untuk data 20 newsgroup.

Full Text:

PDF


DOI: http://dx.doi.org/10.12962/j24068535.v13i2.a488

Refbacks

  • There are currently no refbacks.