EMPIRICAL STUDY OF CAR LICENSE PLATES RECOGNITION

Nasa Zata Dina, Matthew Dailey

Abstract


The number of vehicles on the road has increased drastically in recent years. The license plate is an identity card for a vehicle. It can map to the owner and further information about vehicle. License plate information is useful to help traffic management systems. For example, traffic management systems can check for vehicles moving at speeds not permitted by law and can also be installed in parking areas to se-cure the entrance or exit way for vehicles. License plate recognition algorithms have been proposed by many researchers. License plate recognition requires license plate detection, segmentation, and charac-ters recognition. The algorithm detects the position of a license plate and extracts the characters. Various license plate recognition algorithms have been implemented, and each algorithm has its strengths and weaknesses. In this research, I implement three algorithms for detecting license plates, three algorithms for segmenting license plates, and two algorithms for recognizing license plate characters. I evaluate each of these algorithms on the same two datasets, one from Greece and one from Thailand. For detecting li-cense plates, the best result is obtained by a Haar cascade algorithm. After the best result of license plate detection is obtained, for the segmentation part a Laplacian based method has the highest accuracy. Last, the license plate recognition experiment shows that a neural network has better accuracy than other algo-rithm. I summarize and analyze the overall performance of each method for comparison.

Full Text:

PDF


DOI: http://dx.doi.org/10.12962/j24068535.v13i1.a383

Refbacks

  • There are currently no refbacks.


Free counters!
Creative Commons License
JUTI (Jurnal Ilmiah Teknologi Informasi) by Department of Informatics, ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. JUTI is accordance with CC BY-SA.