SENTIMENT ANALYSIS ON E-LEARNING UNIVERSITY XYZ WITH NAÏVE BAYES CLASSIFIER METHOD

Jose Fernando, Fathoni Fathoni

Abstract


The covid-19 pandemic forced students and lecturers to carry out teaching and learning from home. Therefore, XYZ    University focuses its students on using e-learning. E-learning that has been running and used by students must be evaluated, so that teaching and learning activities can run well. Evaluation can be done by collecting opinions based on the features of XYZ University E-learning on students through questionnaires. All opinions can be analyzed using classification method called Naïve Bayes and Support Vector Machine for comparison.  The research started by collecting data, preprocessing data, labeling using polarity, calculating the frequency that often from each e-learning feature, and calculating the accuracy of the Complement Naïve Bayes model and Support Vector Machine model. The research results conducted on 1995 dataset testing, in student opinions with 1289 positive values, 372 negative values, and 364 neutral values. Reinforced by the comparison result of Complement Naive Bayes and Support Vector Machine. When Complement Naïve Bayes model accuracy of 89%, recall 85,3%, and the f1-score 85%. While Support Vector Machine accuracy is lower 11,1% than Complement Naïve Bayes Model with only 74,4%. These results indicate that of the 12 features on XYZ University E-learning, 8 features have a good opinion, 2 features have a bad opinion, and 2 feature have a neutral opinion.


Full Text:

PDF

References


K. Khan et al., “Urdu sentiment analysis,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 9, pp. 646–651, 2018, doi: 10.14569/ijacsa.2018.090981.

Kementerian Pendidikan Dan Kebudayaan, “Pedoman Penyelenggaraan Belajar Dari Rumah Dalam Masa Darurat Penyebaran Corona Virus Disease (Covid-19),” Surat Edaran Nomor 15 Tahun 2O2O, no. 021, pp. 1–20, 2020.

A. S. AJIATMOJO, “Penggunaan E-Learning Pada Proses Pembelajaran Daring,” Teach. J. Inov. Kegur. dan Ilmu Pendidik., vol. 1, no. 3, pp. 229–235, 2021, doi: 10.51878/teaching.v1i3.525.

A. G. Prawiyogi, T. L. Sadiah, A. Purwanugraha, and P. N. Elisa, “Penggunaan Media Big Book untuk Menumbuhkan Minat Membaca di Sekolah Dasar,” J. Basicedu, vol. 5, no. 1, pp. 446–452, 2021, doi: 10.31004/basicedu.v5i1.787.

B. A. Sevsa and M. D. R Wahyudi, “Analisis Sentimen pada Indeks Kinerja Dosen Fakultas SAINTEK UIN Sunan Kalijaga Menggunakan Naive Bayes Classifier,” J. Buana Inform., vol. 10, no. 2, p. 112, 2019, doi: 10.24002/jbi.v10i2.2250.

C. Prianto et al., “Sentimen Analisis Terhadap Pembelajaran Jarak Jauh Menggunakan Metode Naïve Bayes Classifier dan Lexicon Based,” vol. 14, no. 2, pp. 79–87, 2021.

I. Fakhri and R. F. Umbara, “Analisis Sentimen pada Kuisioner Kepuasan Terhadap Layanan dan Fasilitas Kampus Universitas Dengan Menggunakan Klasifikasi Support Vector Machine (SVM),” e-Proceeding Eng., vol. 6, no. 2, 2019.

R. R. Putra, M. E. Johan, and E. R. Kaburuan, “A naïve bayes sentiment analysis for fintech mobile application user review in Indonesia,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 8, no. 5, pp. 1856–1860, 2019, doi: 10.30534/ijatcse/2019/07852019.

A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,” J. Teknoinfo, vol. 14, no. 2, p. 115, 2020, doi: 10.33365/jti.v14i2.679.

B. M. Pintoko and K. M. L., “Analisis Sentimen Jasa Transportasi Online pada Twitter Menggunakan Metode Naive Bayes Classifier,” e-Proceeding Eng., vol. 5, no. 3, pp. 8121–8130, 2018.

N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, and S. Samudi, “Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, p. 293, 2020, doi: 10.24114/cess.v5i2.18186.

M. Ichwan, I. A. Dewi, and Z. M. S, “Klasifikasi Support Vector Machine (SVM) Untuk Menentukan TingkatKemanisan Mangga Berdasarkan Fitur Warna,” MIND J., vol. 3, no. 2, pp. 16–23, 2019, doi: 10.26760/mindjournal.v3i2.16-23.

A. Firmansyah Sulaeman, A. Afif Supianto, and F. Abdurrachman Bachtiar, “Analisis Sentimen Opini Mahasiswa Terhadap Saran Evaluasi Kinerja Dosen Menggunakan TF-IDF dan Support Vector Machine,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. , vol. 3, no. 6, pp. 5647–5655, 2019, [Online]. Available: http://j-ptiik.ub.ac.id.

A. Zein and E. Suharyanto, “Sentimen Analisis Pada Komentar Pendek Evaluasi Dosen Oleh Mahasiswa (Edom) Program Studi Sistem Informasi Universitas …,” J. Ilmu Komput., vol. V, no. 01, 2022, [Online]. Available: https://jurnal.pranataindonesia.ac.id/index.php/jik/article/view/113%0Ahttps://jurnal.pranataindonesia.ac.id/index.php/jik/article/download/113/66




DOI: http://dx.doi.org/10.12962/j24068535.v21i2.a1147

Refbacks

  • There are currently no refbacks.