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ABSTRACT

The rapid expansion of Internet of Things (IoT) ecosystems has enabled large-scale interconnected smart environments 

while simultaneously exposing IoT devices to increasingly sophisticated cyber threats. To address these challenges, machine 

learning and deep learning based intrusion detection systems (IDS) have been widely adopted; however, many existing 

approaches suffer from insufficient temporal modeling, and poor performance under extreme class imbalance. In this study, 

we investigate a multi-task stacked Long Short-Term Memory (LSTM) architecture for IoT intrusion detection, where binary 

anomaly detection and multi-class attack classification are jointly learned within a unified temporal framework. The proposed 

model examines different inter-path knowledge transfer mechanisms, including additive, gated, and attention-based aggrega

tion, to enhance discriminative attack representation learning. A topology-constrained shuffling strategy is further introduced to 

preserve intra-flow temporal dependencies while reducing reliance on fixed traffic ordering. Experimental results on the Edge-

IIoTset dataset show that all models achieve high binary detection performance (F1-score above 97%), while attention-based 

aggregation consistently outperforms static fusion strategies for multi-class classification, yielding superior macro F1-score 

and AUC-PR under severe class imbalance. These findings emphasize the importance of context-aware information sharing 

and temporal structure preservation for robust and adaptive IoT intrusion detection systems.

Keywords: Intrusion detection system, temporal deep learning, multi-task prediction, long-short term memory.

1. Introduction

The rapid growth of the Internet of Things (IoT) ecosystem has led to the deployment of large-scale inter

connected intelligent devices, ranging from industrial systems to household sensors [1]. The Internet of Things 

represents a new phase in the evolution of the internet, in which physical objects are equipped with sensing 

capabilities and the ability to communicate with one another. This technology has been widely adopted across 

various industrial sectors [2].

However, numerous studies [3], [4], [5] have shown that IoT devices exhibit a high level of vulnerability 

due to the heterogeneity of their networks, limited security capabilities, and massive deployment scale. These 

conditions enable attackers to compromise millions of IoT devices and incorporate them into botnets, which are then 

leveraged to launch large-scale distributed denial-of-service (DDoS) attacks that overwhelm networks and disrupt 

* Corresponding author.

Received: December 22nd, 2025. Revised: December 26th, 2025. Accepted: January 4th, 2026.

Available online: January 15th, 2026.

© 2026 The Authors. This is an open access article under the CC BY-SA license (https://creativecommons.org/licenses/by-sa/4.0/)

DOI: https://doi.org/10.12962/j24068535.v24i1.a1446

149

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.12962/j24068535.v24i1.a1446


C. B. Sabdana et al. – Multi-task Temporal Deep Learning Model for Real Time Intrusion Detection System

server operations [6]. Consequently, there is a pressing need for intrusion detection approaches that go beyond 

static data characteristics and are capable of capturing the temporal dynamics of network traffic while adapting to 

heterogeneous operational environments [7].

Machine Learning (ML) and Deep Learning (DL)-based intrusion detection methods have been increasingly 

adopted in IoT environments, as they demonstrate higher detection accuracy than traditional rule-based techniques 

[1], [8]. Prior research indicates that algorithms such as Support Vector Machines (SVM), Random Forests, Neural 

Networks, Long Short-Term Memory (LSTM) networks, and Convolutional Neural Networks (CNN) are effective 

in enhancing IoT security [6], [9], [10]. Nevertheless, many of these approaches still suffer from significant 

generalization limitations when deployed on real-time data [11]. A considerable number of studies design their 

models to operate on aggregated flow-level features or apply recurrent architectures to packets that have already 

been grouped into flows [12]. While these techniques perform well under experimental conditions, they introduce 

substantial computational overhead when flow reconstruction must be performed in real time [12], [13]. Moreover, 

such models often achieve optimal performance only on the datasets used during training, while their effectiveness 

degrades markedly when applied to different domains or previously unseen attack scenarios [14]. This limitation is 

primarily attributed to reliance on device-specific features, training processes that insufficiently capture the temporal 

structure of traffic flows, and a lack of rigorous cross-dataset evaluation that reflects real-world variability [11], 

[13]. Therefore, more adaptive modeling approaches capable of abstracting features at a higher and more generic 

level are critically needed for modern IoT security systems.

Motivated by these challenges, this study proposes an IoT intrusion detection model based on a Multi-Task 

Stacked LSTM architecture combined with an adaptive feature engineering strategy to enhance cross-domain 

attack pattern understanding. The Multi-Task Stacked LSTM integrates multi-task learning with stacked LSTM 

layers, enabling the model to learn complex temporal patterns while simultaneously addressing multiple related 

tasks. This approach improves both learning efficiency and generalization capability and has been successfully 

applied to various time-series problems [15], [16], [17]. Rather than relying solely on static representations, the 

proposed method exploits sequential traffic information without performing flow-level grouping or aggregation. 

Feature selection is guided by domain knowledge to emphasize device-agnostic characteristics and avoid over-

fitting to specific physical device attributes. In addition, a gated aggregation mechanism is employed during node 

representation fusion to highlight the most relevant features for classification.

The contributions of this research are twofold. First, this study proposes a Multi-Task Stacked LSTM-based 

intrusion detection framework that jointly models temporal dependencies in IoT network traffic while learning 

multiple related detection objectives, enabling more effective representation learning for sequential traffic patterns. 

Second, an adaptive feature engineering strategy guided by domain knowledge is introduced to prioritize device-

agnostic and flow-relevant features, thereby reducing dependence on hardware-specific attributes. This strategy 

is further supported by a shuffling mechanism, which preserves temporal ordering within traffic flows without 

requiring expensive real-time flow reconstruction.

The rest of this article is organized as follows. Section 2 presents multiple related research on Intrusion 

Detection System using Deep Learning algorithm. Section 3 describes the research methodology, including the 

experimental design for attack prediction and temporal modelling to train the models. Section 4 reports the 

experimental results with comparison between multiple architecture design. Section 5 discusses the key findings, 

analysis, implication of our experimental results, and the limitation of this works. Section 6 concludes the research 

and provides directions for further study.

2. Related Works

This section reviews prior studies relevant to this research, as summarized in Table 1. The analysis aims to 

provide a comprehensive understanding of the evolution of intrusion detection system (IDS) research and to position 

the present study within the existing body of work. Over the years, IDS methodologies have evolved from classical 

offline evaluations using benchmark datasets to more dynamic, real time detection settings. In particular, recent 
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Table 1:  Previous Related Works in Intrusion Detection Systems using Deep Learning.

Year/Ref. Method Temporal Imbalance Data 

Handling

Target Multitask Dataset Result

Research employing Classical IDS Benchmark Datasets

2017 [18] Recurrent Neural 

Network (RNN-

IDS)

Yes No Binary

Multiclass

No KDD99 Accuracy 97.5%

Precision 96%

2018 [19] Stacked Non-

symmetric Deep 

Autoencoder + 

Random Forest 

(NDAE+RF)

No No Binary

Multiclass

No KDD99, NSL-

KDD

Accuracy 97.9%

F1-score 97%

2019 [20] Deep Neural 

Network (Scale-

Hybrid-IDS-

AlertNet)

No No Binary

Multiclass

Yes KDDCup99, NSL-

KDD, UNSW-

NB15, Kyoto, 

CICIDS2017

Accuracy 99.2%

F1-score 98.7%

2022 [21] Deep Neural 

Network (DNN) 

+ Multi-Task 

Learning (MTL)

No No Binary Yes UNSW-NB15, 

CICIDS2017

Improved 

performance (not 

numerically stated)

2023 [22] DNN + filter-based 

feature selection 

+ GAN synthetic 

data

No Generative 

Adversarial 

Network (GAN)

Binary

Multiclass

No UNSW-NB15 Accuracy 84% 

(without GAN)

Accuracy 91% 

(with GAN)

2023 [23] CNN 

+ CapSA (Hybrid 

evaluation)

No No Binary

Multiclass

No NSL-KDD, BoT-

IoT, KDD99, 

CIC2017

Accuracy 99.1%

Precision 98.9%

Recall 98.7%

Research employing Real-time and IoT-oriented IDS Datasets

2023 [24] Stacking ensemble 

(CNN + LSTM + 

GRU + DNN)

Yes No

Stratified KFold 

to preserve labels 

ratio

Binary

Multiclass

No ToN_IoT, 

CICIDS2017, 

SWaT

Accuracy 99.4%

FPR < 1%

2023 [25] Ensemble of RNNs 

(LSTM + GRU) 

+ Harris Hawk 

Optimization

Yes No Multiclass No IoT benchmark 

datasets

Accuracy 98.5%

Precision 98%

Recall 97.8%

2023 [26] FFNN, LSTM, 

Random Neural 

Network 

(RandNN)

Yes Synthetic Minority 

Oversampling 

(SMOTE)

Binary No CIC-IoT22 F1-Score:

FFNN 99.93%

LSTM 99.85%

RandNN 96.42%

2024 [27] CNN-GRU hybrid 

(AttackNet)

Yes No Multiclass No N_BaIoT Accuracy 99.8%

Precision 99.8%

Recall 99.7%

2025 [28] Self-supervised 

Contrastive 

Learning 

(CARLA)

Yes No Binary No 7 TSAD real-world 

datasets

F1-score 97.2%

AU-PR 98%

studies have explored diverse frameworks such as Deep Learning (DL) and Multi-Task Learning (MTL) to enhance 

detection performance across both traditional and IoT oriented environments. These developments form the basis 

for the comparative overview presented in the next section.

Table 1 summarizes deep learning based IDS studies, categorized by dataset type (classical and real-time 

IoT). This grouping illustrates the gradual evolution from traditional offline evaluation to modern IoT based and 
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streaming detection. Since these studies differ in their goals and evaluation settings, the performance results are 

reported as presented in the original papers. They should be interpreted alongside the “Imbalance Data Handling” 

column, as all benchmark and IoT datasets are naturally imbalanced and were managed using the methods listed in 

that column.

Based on the datasets reviewed in Table 1, several classical benchmarks such as KDD99 [29], NSL-KDD [29], 

and UNSW-NB15 [30] were developed under controlled or synthetic conditions that no longer reflect the complexity 

of contemporary network traffic. Prior studies have critically noted that these datasets oversimplify attack behaviors 

and fail to represent the dynamic and heterogeneous characteristics of real world IoT environments [31], [32]. 

Consequently, models trained on such data often suffer from overfitting and limited generalization. While these 

datasets remain valuable for reproducibility and benchmarking, their restricted realism constrains the meaningful 

evaluation of modern deep learning based IDS models. In response, more recent datasets have shifted toward IoT 

oriented and temporally dynamic traffic, underscoring the growing need for IDS approaches capable of learning 

from imperfect, evolving, and heterogeneous data.

Several recent studies have explored deep learning and multitask learning approaches for intrusion detection in 

IoT environments, each addressing different challenges with varying degrees of success. Sanju et al. [23] proposed 

the MM-WMVEDL model, a hybrid intrusion detection framework that combines metaheuristic optimization with 

an ensemble of LSTM and GRU networks to handle the physical and functional heterogeneity of IoT systems, 

achieving an accuracy of 98.12%. However, this approach relied on a computationally intensive single task archi

tecture and did not incorporate explicit mechanisms for class imbalance mitigation or zero day attack evaluation, 

limiting its adaptability to unseen traffic conditions.

In contrast, Albelwi et al. [19] introduced a Multi-Task Deep Learning (MTDL) framework integrating 

contrastive learning and supervised clustering to enhance feature representation and improve cross-dataset gener

alization. The model achieved accuracies ranging from 95.5% to 99.9% across NSL-KDD, AWID, and BoT-IoT 

datasets. Despite these promising results, the framework primarily emphasized spatial feature extraction and lacked 

temporal modeling an essential component for capturing the dynamics of IoT traffic.

Elsayed et al. [24] developed SATIDS, a two level LSTM based multitask architecture designed to classify 

both attack categories and subtypes, achieving 96.35% accuracy in IoT environments. However, the system was 

evaluated using closed set testing on a single dataset, without cross dataset or unseen attack validation, thereby 

limiting its ability to detect zero day intrusions. Although the multitask structure reduced overfitting, it continued 

to face severe class imbalance and insufficient generalization to novel attack patterns.

Overall, studies such as MM-WMVEDL, MTDL, and SATIDS have made significant contributions to improv

ing intrusion detection performance in IoT environments. Nevertheless, several limitations remain. A comparative 

analysis of these studies reveals three major challenges. First, many IoT-oriented IDS models still depend on 

outdated or homogeneous datasets, which limits their ability to generalize across diverse and evolving network 

conditions. Second, although multitask learning improves generalization across attack categories, most architectures 

continue to process tasks independently, with minimal aggregation or feature fusion mechanisms between learning 

branches. The absence of explicit fusion strategies such as gated, additive, or attention based integration reduces 

these models’ capacity to share complementary representations and jointly optimize across related tasks. Third, the 

temporal characteristics of IoT traffic are often underutilized; random batching or non sequential training disrupts 

flow level continuity and weakens the model’s capacity to capture long range dependencies and temporal correla

tions. Collectively, these shortcomings highlight the need for IDS frameworks that integrate temporal modeling, 

inter task collaboration, and effective fusion driven learning while maintaining robustness to data imbalance direc

tions that form the conceptual foundation of the present study. In particular, the proposed approach extends beyond 

existing fusion paradigms by introducing structured additive, gated, and cross attention mechanisms that enable 

dynamic and interpretable information exchange between tasks, addressing limitations observed in prior multitask 

IDS architectures.
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Fig. 1: Overview of the five main components. The Stacked Dual-Path LSTM (Component 2) is described in detail in Fig. 2, while the full 

training procedure is presented in Fig. 3.

To address these challenges, this study proposes a Stacked Dual-Path LSTM Encoder that integrates three 

aggregation mechanisms Additive, Gated, and Cross Attention to facilitate effective information exchange between 

anomaly detection and attack type classification tasks. Unlike conventional fusion strategies such as feature 

concatenation or shared layer multitask learning, the proposed architecture establishes structured communication 

pathways that explicitly regulate inter task interactions and feature alignment, enhancing cooperative representation 

learning. This design offers a more flexible and interpretable alternative to existing fusion schemes by allowing 

dynamic information exchange between tasks, instead of depending on static feature combination or limited 

parameter sharing. To further strengthen model robustness, the design incorporates imbalance aware optimization 

through a weighted focal loss, along with a structured shuffling mechanism that preserves flow level temporal 

topology during training, enabling more realistic modeling of IoT traffic. Additionally, this study investigates the 

influence of encoder depth, comparing three and four layer configurations to evaluate their effects on the richness 

and stability of temporal representations. Overall, the proposed framework establishes a comprehensive and resilient 

foundation for IoT intrusion detection, effectively overcoming the architectural and data centric limitations that 

remain unaddressed in prior studies.

3. Proposed Method

The proposed model is a multi-task temporal deep learning architecture designed to accurately detect attacks 

in IoT networks while simultaneously identifying their attack types. The system processes flow-based packet 

sequences in order to preserve temporal dependencies, which are a critical characteristic of IoT communication 

traffic patterns. An overview of this system are shown in Fig. 1.

Overall, the architecture consists of five main components, described as follows:

1. Preprocessing and Flow Construction Stage

This stage transforms raw network packets into structured sequential representations based on network flows, 

enabling consistent temporal modeling of packet-level information.

2. Stacked Dual-Path LSTM Encoder for Binary and Multi-Class Prediction

The encoder learns temporal patterns from both normal and malicious traffic by modeling sequential depen

dencies across packet flows.

3. Inter-Path Aggregation Module at Each Encoder Layer

This module facilitates knowledge sharing from the binary anomaly detection task to the multi-class attack 

classification task, improving representational consistency across tasks.
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4. Dual Prediction Head

The model produces two outputs simultaneously: anomaly detection (binary classification) and attack type 

identification (multi-class classification).

5. Multi-Task Training Procedure

Model training employs a combination of Focal Loss and gradient-based optimization to effectively address 

class imbalance and stabilize multi-task learning.

The multi-task learning strategy hypothetically enables generalization to previously unseen (zero-day) attacks 

while increasing training efficiency by jointly learning both tasks within a single integrated model.

3.1. Preprocessing and Flow Construction Stage

After data cleaning and feature selection, the dataset is reorganized based on (flow_id, flow_seq) pairs. Each 

flow represents a sequence of packets originating from the same network connection, ordered by increasing time

stamps. The flow construction in this study utilizes heuristics optimized for TCP and UDP traffic, which constitute 

the vast majority of the network communications in the benchmark datasets. This approach ensures reliable flow 

aggregation for connection-oriented protocols. A detailed discussion regarding the applicability of these heuristics 

to other protocol types is provided in section 5.

The flow construction in this study follows protocol-specific heuristics primarily designed for TCP and UDP 

traffic, which dominate the benchmark datasets used. While this approach provides reliable flow aggregation for 

connection-oriented communication, its direct applicability to non-TCP/UDP traffic (e.g., ICMP or CoAP) is limited 

and remains a direction for future enhancement. Each packet within a flow contains three main components:

1. Flow identifiers, consisting of flow_id and flow_seq, which indicate the flow identity and the packet order 

within the flow;

2. Selected and encoded numerical features; and

3. Attack class labels, where 0 denotes normal traffic and 1-14 correspond to different attack types.

Before the training data are fed into the model, a shuffling mechanism is applied that preserves the packet 

order (topology) within each flow while allowing reordering across different flows. Furthermore, this mechanism 

is referred to as topology-constrained shuffling. Mathematically, this mechanism can be formulated as sampling 

a global permutation 𝜎 from a restricted permutation space that preserves intra-flow temporal ordering while 

permitting arbitrary inter-flow rearrangement.

Let 𝑆𝑖 = (𝑠𝑖,1, 𝑠𝑖,2, 𝑠𝑖,3, …) denote the packet sequence of flow-𝑖 in the dataset, where each packet 𝑠𝑖,𝑗 repre

sents the 𝑗-th packet of flow sequence 𝑆𝑖. The global permutation 𝜎 is constrained to satisfy 𝑠𝑖,𝑗 ≺ 𝑠𝑖,𝑘 ⇒ 𝜎(𝑠𝑖,𝑗) <
𝜎(𝑠𝑖,𝑘), which ensures that the temporal causality of packets belonging to the same flow is strictly preserved. Here, 

𝜎(𝑠) denotes the position of packet 𝑠 in the permuted sequence induced by 𝜎.

Formally, the topology-constrained shuffling operation could be defined as:

𝐻 = (𝜎 ∈ 𝑆 | 𝑠𝑖,𝑗 ≺ 𝑠𝑖,𝑘 ⇒ 𝜎(𝑠𝑖,𝑗) < 𝜎(𝑠𝑖,𝑘)) (1)

In equation (1), 𝐻  represents the resulting shuffled sequence (denoted using parentheses) obtained by applying 

the constrained permutation 𝜎 to the flattened flow sequence 𝑆.

This strategy enables the model to learn valid temporal patterns within individual flows while mitigating 

unintended dependencies on static network topology or fixed inter-flow ordering. The resulting structured sequence 

tensors serve as input to the temporal feature extraction stage of the Stacked LSTM Encoder.

3.2. Stacked Dual-Path LSTM Encoder for Binary and Multi-Class Prediction

The temporal feature extraction stage is implemented using multiple layers of a Stacked Dual-Path LSTM 

Encoder, as illustrated in Fig. 2. Each traffic flow is processed sequentially to capture both short-term and long-

term temporal dependencies inherent in IoT network traffic. This design explicitly models the sequential nature of 
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Fig. 2: Stacked Dual-Path LSTM Encoder; Deep Learning Architecture.

packet-level flows, which is essential for accurately characterizing normal communication behavior as well as the 

temporal dynamics of network attacks.

At each encoder layer, two parallel LSTM blocks are employed to serve distinct yet complementary learning 

objectives. Specifically:

1. Binary Path, which focuses on discriminating between normal and malicious traffic, and

2. Multi-Class Path, which aims to learn fine-grained temporal patterns associated with different attack cate

gories.

Both paths share the same recurrent formulation but operate on task-specific representations. The computa

tions performed within each path are defined by the standard LSTM recurrence and subsequent post-processing 

operations. Let 𝑥𝑡 ∈ ℝ𝑑 represents input vectors at position-𝑡 in the sequence with dimension-𝑑, each LSTM layer 

could formally defined as:

(ℎ(𝑖)
𝑡 , 𝑐(𝑖)

𝑡 ) = LSTM(ℎ(𝑖)
𝑡−1, 𝑐

(𝑖)
𝑡−1, 𝑜

(𝑖−1)
𝑡 )

𝑜(𝑖)
𝑡 = Dropout(ReLU(LayerNorm(ℎ(𝑖)

𝑡 )))
(2)

From equation (2), ℎ(𝑖)
𝑡  and 𝑐(𝑖)

𝑡  each correspond to hidden-state and cell-state output of LSTM block for 

position-𝑡 in the sequence and layers-(𝑖) (see Fig. 2). While 𝑜(𝑖)
𝑡  denote LSTM output (hidden-state ℎ(𝑖)

𝑡 ) followed 

by layer normalization, nonlinearity function ReLU, and dropout.

The post-processing stage serves multiple purposes: layer normalization stabilizes hidden-state distributions 

and mitigates exploding gradients, the ReLU activation alleviates vanishing gradient issues by promoting sparse 

and non-linear representations, and dropout reduces the risk of overfitting by introducing stochastic regularization. 

Although applying ReLU after LSTM is less common in conventional sequence models, in this architecture we 

155



C. B. Sabdana et al. – Multi-task Temporal Deep Learning Model for Real Time Intrusion Detection System

hypothesize ReLU could helps maintain stable gradient flow and enhances non-linear feature expressiveness across 

stacked recurrent layers. This design follows the normalization principles introduced in Layer Normalization [33], 

which have been shown to improve training stability and gradient propagation in deep sequential models. The 

necessity of this component was empirically validated through ablation studies, which are detailed in Section 4.4.

3.3. Inter-Path Aggregation Module at Each Encoder Layer

Before the input features are fed into the Multi-Class LSTM block, an inter-path aggregation process is applied 

using the feature representations produced by the Binary LSTM block. The primary objective of this mechanism 

is to facilitate knowledge transfer from the simpler task (binary anomaly detection) to the more complex task of 

multi-class attack classification. This asymmetric flow is intended to maintain the distinct functional roles of the 

dual-path architecture. By injecting coarse-grained, anomaly-aware information into the multi-class pathway, the 

model is guided to learn temporal representations that are more informative and discriminative for distinguishing 

among attack types with similar traffic patterns.

The aggregation function in equation (3), (4) and (6), denoted as 𝐴𝑔𝑔(., .), combines the feature representations 

𝑜(𝑖−1)
multi  and 𝑜(𝑖)

bin which correspond to the output of the (𝑖 − 1)-th layer of the multi-class LSTM path and the output of 

the (𝑖)-th layer of the binary LSTM path, respectively. This aggregation function is configurable and varies across 

experimental settings. In this study, three aggregation strategies are investigated:

1. Additive Aggregation

𝐴𝑔𝑔(𝑜(𝑖−1)
multi , 𝑜

(𝑖)
bin) = 𝑜(𝑖−1)

multi + 𝑜(𝑖)
bin (3)

Aggregation function defined in equation (3) directly sums the representations from both paths without 

applying any feature selection or weighting mechanism.

2. Gated Aggregation

𝐴𝑔𝑔(𝑜(𝑖−1)
multi , 𝑜

(𝑖)
bin) = 𝑜(𝑖−1)

multi (1 − tanh(𝑔)) + 𝑜(𝑖)
bin tanh(𝑔)

𝑔 = 𝑊𝑔(𝑜(𝑖−1)
multi ⊕ 𝑜(𝑖)

bin)
(4)

In aggregation function defined with equation (4), 𝑔 is the gating vector from transforming the concatenated 

(⊕) outputs with learnable parameters 𝑊𝑔. The hyperbolic tangent activation is defined on equation (5) with 

𝑒 defined as euler constant:

tanh(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥 (5)

The tanh function defined in equation (5) is chosen because LSTM outputs after ReLU lie in [0, +∞), 
where sigmoid quickly saturates and limits gating flexibility into [1

2 , 1]. In contrast, tanh provides a smoother 

nonlinearity with a wider effective dynamic range, and can be linearly shifted to [0, 1] for gating. This improves 

gradient flow and enables more expressive modulation of inter-path feature contributions.

3. Cross-Attention Aggregation

𝐴𝑔𝑔(𝑜(𝑖−1)
multi , 𝑜

(𝑖)
bin) = Attention(𝑜(𝑖−1)

multi , 𝑜
(𝑖)
bin, 𝑜

(𝑖)
bin) (6)

This aggregation function defined in equation (6) use attention mechanism that defined in equation (7), as:
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Fig. 3: Diagram of training process. Training is performed iteratively until model convergence, defined as no improvement in validation loss 

over a predefined number of iterations.

Attention(𝑄, 𝐾, 𝑉 ) = softmax(𝑄𝐾𝑇

√𝑑𝑘
)𝑉

𝑄 = 𝑊𝑞𝑜
(𝑖−1)
multi

𝐾 = 𝑊𝑘𝑜(𝑖)
bin

𝑉 = 𝑊𝑣𝑜
(𝑖)
bin

(7)

Equation (7) is a standard scaled dot-product attention introduced by Vaswani et al [34]. In our setting, 

attention aggregation used to perform cross-attention between binary and multi-class output with 𝑊𝑞, 𝑊𝑘, and 

𝑊𝑣 each a learnable parameter, and softmax is activation function defined as:

softmax(𝑥) = 𝑒𝑥𝑖

∑𝐾
𝑗=1 𝑥𝑗

(8)

In equation (8), 𝑥𝑖 corresponds to each element in input vector 𝑥, and 𝐾 as the dimension of input vector 𝑥.

This formulation allows the multi-class representation to selectively attend to binary-path features based on 

contextual relevance, enabling fine-grained feature alignment across tasks.

After all encoder layers are processed, the final temporal representation is used to generate two model outputs. 

The Binary Classification Head distinguishes normal traffic from attack traffic, while the Multi-Class Classification 

Head identifies specific attack types. Each output is produced through a dedicated dense layer and optimized using 

a task-specific loss function. This design allows the model to jointly learn both classification objectives within a 

single, efficient end-to-end architecture.
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3.4. Multi-Task Loss-Based Training Procedure

The model training process follows the workflow illustrated in Fig. 3, which consists of three main stages: 

batch sampling, training step, and loss computation, followed by an evaluation of the model’s capability on testing 

datasets.

During the batch sampling stage, a subset of flows is randomly selected from the training set. These flows are 

then organized into packet sequences using topology-constrained shuffling we explained before. Then, the resulting 

batches are processed in the training step, where each packet sequence is forwarded through the Stacked Dual-

Path LSTM Encoder and the Inter-Path Aggregation Module. This process produces two prediction outputs: binary 

classification logits for anomaly detection and multi-class classification logits for attack type identification. Both 

outputs are subsequently evaluated using their respective loss functions.

The loss computation stage involves calculating and aggregate the Binary Prediction Loss and the Multi-Class 

Prediction Loss, both of which employ weighted Focal Loss to address class imbalance. The weighted Focal Loss 

is defined as:

ℒ︀ = − ∑
𝑛

𝑖=1
𝛼𝑖𝑦𝑖(1 − 𝑦𝑖)

𝛾 log(𝑦𝑖) (9)

In equation (9), 𝛼𝑖 denotes the loss weight for class 𝑖 which on our experiment setting defined as the inverse 

of square root number of samples belonging to that class. While 𝑦𝑖 and 𝑦𝑖 each corresponds to predicted class 

probability and actual class label from dataset, respectively.

4. Experiments & Result

Data preprocessing and feature selection were conducted in a Google Colab Pro environment without GPU 

acceleration. Deep learning model training was performed in a Kaggle environment using an NVIDIA Tesla P100 

GPU. Further details regarding the datasets, experimental configuration, and evaluation results are provided in the 

following subsections.

4.1. Dataset

The primary dataset used in this study is Edge-IIoTset [35], [36], which consists of network traffic captures in 

PCAP format. The dataset contains 14 attack categories (excluding the normal class) and comprises over 21 million 

packets distributed across more than 11 million network flows. Furthermore, this dataset exhibits severe class 

imbalance: the dominant class (normal traffic flows) accounts for more than 50% of the samples, while minority 

classes such as MITM (Man-in-the-Middle) and Fingerprinting attacks each represent less than 0.01% of the data, 

and a there are 8 class that represented by less than 1% of the data. Feature selection was performed based on 

domain knowledge, and relevant packet fields were extracted using the Wireshark network analysis tool [37].

Packet-to-flow assignment was conducted by grouping packets according to the tcp.stream and udp.stream 

identifiers. For ARP traffic, which lacks transport-layer stream identifiers, packets were grouped based on source 

and destination IP addresses. For training and model evaluation, the dataset was split at the flow level, with 20% 

of flows reserved for the test set and the remaining flows used for training and validation.

4.2. Models & Training Configuration

The aim of this study is to conduct a comparative analysis of different model configurations. Two hyperpara

meters are considered as experimental variables: (1) the depth of the LSTM layers; and (2) the aggregation function 

used to combine the outputs of the binary and multi-class prediction paths (see Fig. 2). We also train a baseline 

model that consist of stacked LSTM Block with only multi-class classification objective. A summary of the model 

configurations, including the total number of parameters, is presented in Table 2. Our baseline model (with id: 

BASE) are configured so that the number of trainable parameters are comparable with every other models. Model 

identifiers are also provided to facilitate reference during the results analysis.
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Table 2: Experiment models configuration and total number of trainable parameters.

Model ID Aggregation Layers

Depth

Hidden

Dimension

Number of

Trainable Parameters

BASE - 8 256 9 037 840

ADD-3 Addition 3 256 6 226 448

ADD-4 Addition 4 256 8 595 472

GAT-3 Gated 3 256 6 489 104

GAT-4 Gated 4 256 8 989 456

ATT-3 Attention 3 256 6 752 784

ATT-4 Attention 4 256 9 384 976

All models listed in Table 2 were trained using a consistent configuration to ensure a fair comparison. Each 

model was optimized with the AdamW optimizer [38] using a default weight decay of 0.01, which provides 

sufficient regularization as established in modern deep learning literature. We selected an initial learning rate of 

2 × 10−6 for all experiments. The adaptive nature of AdamW makes the training procedure less sensitive to the 

initial learning rate choice compared to standard Stochastic Gradient Descent (SGD). Models were trained for 100 

epochs with a batch size of 192, and the best-performing iteration was selected based on the lowest validation loss 

to ensure optimal convergence.

4.3. Evaluation Metrics

Two evaluation metrics were adopted to compare the experimental results. The first metric is the macro-

averaged F1-score, defined as:

𝐹1 = 2 𝑃𝑟 𝑅𝑐
𝑃𝑟 + 𝑅𝑐

(10)

The second metric is the macro-averaged area under the Precision-Recall curve (AUC-PR), which is formally 

defined as:

𝐴𝑈𝐶-𝑃𝑅 = ∫ 𝑃𝑟(𝑅𝑐) d𝑅𝑐 (11)

In equation (10) and (11), 𝑃𝑟 and 𝑅𝑐 each denote a precision and recall, respectively. recision measures the 

accuracy of positive predictions and is defined as the ratio of correctly predicted positive samples to all predicted 

positive samples. Recall measures the completeness of positive predictions and is defined as the ratio of correctly 

predicted positive samples to all actual positive samples. Formally, computation of precision and recall are defined 

on equation (12):

𝑃𝑟 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑐 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(12)

Where 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 represent the number of true positives, false positives, and false negatives, respectively. 

Macro-averaged F1-score and AUC-PR are selected due to their robustness in evaluating model performance under 

class-imbalanced conditions, which is a critical requirement for intrusion detection systems.

4.4. Experimental Results

After the training and validation procedures, the best-performing model from each experiment was evaluated 

on the test set. A summary of the evaluation results is presented in Table 3. Compared with the baseline model, all 

proposed architectures achieve better performance on the multi-class classification task and significantly outperform 

the baseline in binary classification. This performance improvement can be attributed to the fact that the baseline 
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Table  3: Experiment results evaluated on test set. Every evaluation measurement are expressed as percentage point (%). For multi-class 

evaluation, the scores are aggregated with macro-aggregation. Binary F1-score results for the baseline method are computed by binarizing the 

model outputs. Columns 3 and 7 report the 𝑝-value assessing the statistical significance of the proposed model against the additive aggregation 

model with the same number of layers. Column 6 reports the 𝑝-value comparing the proposed model against the baseline.

Binary Prediction Multi-class PredictionModel ID

F1-score ↑ 𝑝-value

vs. ADD

F1-score ↑ AUC-PR ↑ 𝑝-value

vs. BASE

𝑝-value

vs. ADD

BASE 79.41 - 28.65 30.04 - -

ADD-3 97.24 - 31.02 35.59 < 0.0001 -

ADD-4 97.27 - 30.56 32.79 0.0007 -

GAT-3 97.47 0.0741 30.80 33.93 < 0.0001 0.2868

GAT-4 97.32 0.1329 32.81 38.64 < 0.0001 0.0059

ATT-3 97.22 0.7254 34.25 37.08 < 0.0001 0.0008

ATT-4 97.15 0.6932 34.02 40.08 < 0.0001 0.0002

model is trained solely to minimize a multi-class loss, whereas the proposed multi-task architectures employ 

separate classification heads optimized specifically for each objective.

Overall, every models achieve comparably high binary F1-scores (above 97%, see Table 3), indicating that 

distinguishing normal versus malicious traffic is not a difficult task. In contrast, multi-class performance shows 

substantial variation. Attention-based models (ATT-3 and ATT-4) consistently outperform ADD and GAT variants in 

both macro F1-score and AUC-PR, achieving consistently higher macro F1-score and AUC-PR under severe class 

imbalance compared to ADD and GAT variants. Notably, model with attention aggregation with 3 layers achieves 

the highest macro F1-score, while same model with 4 layers yields the best AUC-PR, indicating a trade-off between 

balanced per-class accuracy and ranking quality. To rigorously validate this observation, McNemar’s tests were 

conducted between paired model variants with identical encoder depth. For the multi-class prediction, the attention-

based models outperform both additive and gated variants (𝑝-value < 0.05, see Table 3), confirming the robustness 

of the observed improvements. While for the binary classification, the results indicate no statistically significant 

differences across model pairs (𝑝-value > 0.05), suggesting that binary intrusion detection performance is largely 

saturated.

To evaluate the impact of the post-LSTM ReLU activation, we compared our best performing models with 

attention aggregation and 4 layers depth against similar setup with the ReLU layer removed. Experimental results 

showed that removing the activation led to a decrease in multi-class F1 Score from 34.02% to 29.28%, and decrease 

in area under PR-curve from 40.08% to 34.69%. This suggests that the ReLU layer is essential to enhances non-

linear feature across stacked recurrent layers before the final aggregation stage.

As shown in Fig. 4, all models exhibit degraded performance under extreme class imbalance. For minority 

classes such as MITM and Fingerprinting, none of the models produce positive predictions, which is reflected 

by near-diagonal precision-recall curves. In contrast, higher precision-recall performance is observed for majority 

classes, including Normal traffic, DDoS TCP SYN Flood, DDoS UDP Flood, and DDoS ICMP Flood attacks.

5. Discussion

This study investigates how architectural choices in multi-task temporal models, specifically inter-path 

aggregation mechanisms and encoder depth affect intrusion detection models performance in IoT network traffic. 

From last section, we could observe that all evaluated models achieve consistently high performance on coarse-

grained anomaly detection, but their ability to discriminate between attack types varies substantially. The findings 

demonstrate that while binary intrusion detection is largely saturated, architectural choices substantially impact 

fine-grained attack discrimination under severe class imbalance.
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Fig. 4: Precision-Recall curves on the test set. The first column corresponds to models with three layers, whereas the second column corresponds 

to models with four layers. The top, middle, and bottom rows represent models with addition, gated, and attention aggregation functions, 

respectively.

From Table 3, it can be observed that attention-based aggregation consistently outperforms both additive and 

gated variants, even when using fewer layers and parameters (e.g., ATT-3 compared with ADD-4 and GAT-4 in 

Table 2). This indicates that selective, context-aware information transfer from the binary path is more effective 

than uniform or static fusion mechanisms for supporting multi-class attack classification. By dynamically weighting 

anomaly-relevant temporal features, the attention mechanism allows the multi-class path to focus on discriminative 
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subsequences that differentiate attacks with similar flow-level behavior. The comparison between three- and 

four-layer encoders reveals a depth-related trade-off between per-class balance and ranking quality. Shallower 

models tends to achieve higher macro F1-scores (supported by ADD and ATT variants), indicating more uniform 

performance across classes, while deeper encoders yield superior AUC-PR (supported by GAT and ATT variants), 

reflecting improved confidence calibration and ranking of positive samples. This suggests that deeper temporal 

abstraction benefits probability estimation but may amplify bias toward dominant classes, especially when minority 

samples are scarce.

Several limitations should be acknowledged. First, the extreme rarity of certain attack classes, such as MITM 

and Fingerprinting, prevents meaningful learning regardless of aggregation strategy, indicating that extreme class 

rarity imposes fundamental limits on purely loss-based re-weighting, and highlights the importance of comple

mentary strategies such as data selection or rebalancing techniques, which remain outside the scope of this study. 

Second, flow construction relies on protocol-specific heuristics, which may limit generalization to alternative traffic 

representations. Third, the aggregation mechanism is designed as a unidirectional information transfer from binary 

classification to multi-class classification to avoid feature homogenization, where symmetric information exchange 

might cause the distinct temporal and structural features of each path to converge and become redundant, we 

acknowledge that this prevents the model from capturing potential bidirectional dependencies. Finally, evaluation 

is confined to a single dataset, restricting conclusions about cross-domain robustness. Nevertheless, the consistent 

gains from attention-based aggregation and topology-constrained shuffling provide strong evidence that structured 

temporal modeling and task-aware information sharing are critical for advancing IoT intrusion detection beyond 

binary classification.

6. Conclusion

In this study, we propose and evaluate several deep learning architectures for identifying attack behavior in 

IoT network traffic. The proposed models employ stacked LSTM layers to jointly address two objectives: binary 

classification (normal versus attack) and multi-class classification (attack type identification). We investigate the 

effects of varying encoder depth and inter-path aggregation strategies to facilitate knowledge sharing between the 

binary and multi-class prediction tasks. The experimental results indicate that context-aware information transfer 

from the binary path more effectively supports attack-type classification than static fusion mechanisms. In addition, 

to better approximate real-time network traffic conditions during training, a topology-constrained shuffling strategy 

is introduced, which improves model generalization to previously unseen temporal sequence patterns.

As stated in the previous section, this work is limited by the use of heuristic flow construction and evaluation 

on a single dataset, Edge-IIoTset. Accordingly, future work will incorporate richer structural information, such as 

explicit flow-level identifiers or learned flow embeddings, while extending the preprocessing module to handle a 

broader range of protocols beyond TCP and UDP. Furthermore, we intend to evaluate cross-dataset generalization 

to assess robustness under different traffic distributions, as well as conduct inference-time performance analysis to 

better characterize the suitability of the proposed models for real-time intrusion detection systems.
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