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ABSTRACT

The rapid expansion of Internet of Things (IoT) ecosystems has enabled large-scale interconnected smart environments
while simultaneously exposing IoT devices to increasingly sophisticated cyber threats. To address these challenges, machine
learning and deep learning based intrusion detection systems (IDS) have been widely adopted; however, many existing
approaches suffer from insufficient temporal modeling, and poor performance under extreme class imbalance. In this study,
we investigate a multi-task stacked Long Short-Term Memory (LSTM) architecture for IoT intrusion detection, where binary
anomaly detection and multi-class attack classification are jointly learned within a unified temporal framework. The proposed
model examines different inter-path knowledge transfer mechanisms, including additive, gated, and attention-based aggrega-
tion, to enhance discriminative attack representation learning. A topology-constrained shuffling strategy is further introduced to
preserve intra-flow temporal dependencies while reducing reliance on fixed traffic ordering. Experimental results on the Edge-
IToTset dataset show that all models achieve high binary detection performance (F1-score above 97%), while attention-based
aggregation consistently outperforms static fusion strategies for multi-class classification, yielding superior macro F1-score
and AUC-PR under severe class imbalance. These findings emphasize the importance of context-aware information sharing
and temporal structure preservation for robust and adaptive IoT intrusion detection systems.

Keywords: Intrusion detection system, temporal deep learning, multi-task prediction, long-short term memory.

1. Introduction

The rapid growth of the Internet of Things (IoT) ecosystem has led to the deployment of large-scale inter-
connected intelligent devices, ranging from industrial systems to household sensors [1]. The Internet of Things
represents a new phase in the evolution of the internet, in which physical objects are equipped with sensing
capabilities and the ability to communicate with one another. This technology has been widely adopted across
various industrial sectors [2].

However, numerous studies [3], [4], [5] have shown that IoT devices exhibit a high level of vulnerability
due to the heterogeneity of their networks, limited security capabilities, and massive deployment scale. These
conditions enable attackers to compromise millions of IoT devices and incorporate them into botnets, which are then
leveraged to launch large-scale distributed denial-of-service (DDoS) attacks that overwhelm networks and disrupt
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server operations [6]. Consequently, there is a pressing need for intrusion detection approaches that go beyond
static data characteristics and are capable of capturing the temporal dynamics of network traffic while adapting to
heterogeneous operational environments [7].

Machine Learning (ML) and Deep Learning (DL)-based intrusion detection methods have been increasingly
adopted in IoT environments, as they demonstrate higher detection accuracy than traditional rule-based techniques
[1], [8]. Prior research indicates that algorithms such as Support Vector Machines (SVM), Random Forests, Neural
Networks, Long Short-Term Memory (LSTM) networks, and Convolutional Neural Networks (CNN) are effective
in enhancing IoT security [6], [9], [10]. Nevertheless, many of these approaches still suffer from significant
generalization limitations when deployed on real-time data [11]. A considerable number of studies design their
models to operate on aggregated flow-level features or apply recurrent architectures to packets that have already
been grouped into flows [12]. While these techniques perform well under experimental conditions, they introduce
substantial computational overhead when flow reconstruction must be performed in real time [12], [13]. Moreover,
such models often achieve optimal performance only on the datasets used during training, while their effectiveness
degrades markedly when applied to different domains or previously unseen attack scenarios [14]. This limitation is
primarily attributed to reliance on device-specific features, training processes that insufficiently capture the temporal
structure of traffic flows, and a lack of rigorous cross-dataset evaluation that reflects real-world variability [11],
[13]. Therefore, more adaptive modeling approaches capable of abstracting features at a higher and more generic
level are critically needed for modern IoT security systems.

Motivated by these challenges, this study proposes an IoT intrusion detection model based on a Multi-Task
Stacked LSTM architecture combined with an adaptive feature engineering strategy to enhance cross-domain
attack pattern understanding. The Multi-Task Stacked LSTM integrates multi-task learning with stacked LSTM
layers, enabling the model to learn complex temporal patterns while simultaneously addressing multiple related
tasks. This approach improves both learning efficiency and generalization capability and has been successfully
applied to various time-series problems [15], [16], [17]. Rather than relying solely on static representations, the
proposed method exploits sequential traffic information without performing flow-level grouping or aggregation.
Feature selection is guided by domain knowledge to emphasize device-agnostic characteristics and avoid over-
fitting to specific physical device attributes. In addition, a gated aggregation mechanism is employed during node
representation fusion to highlight the most relevant features for classification.

The contributions of this research are twofold. First, this study proposes a Multi-Task Stacked LSTM-based
intrusion detection framework that jointly models temporal dependencies in IoT network traffic while learning
multiple related detection objectives, enabling more effective representation learning for sequential traffic patterns.
Second, an adaptive feature engineering strategy guided by domain knowledge is introduced to prioritize device-
agnostic and flow-relevant features, thereby reducing dependence on hardware-specific attributes. This strategy
is further supported by a shuffling mechanism, which preserves temporal ordering within traffic flows without
requiring expensive real-time flow reconstruction.

The rest of this article is organized as follows. Section 2 presents multiple related research on Intrusion
Detection System using Deep Learning algorithm. Section 3 describes the research methodology, including the
experimental design for attack prediction and temporal modelling to train the models. Section 4 reports the
experimental results with comparison between multiple architecture design. Section 5 discusses the key findings,
analysis, implication of our experimental results, and the limitation of this works. Section 6 concludes the research
and provides directions for further study.

2. Related Works

This section reviews prior studies relevant to this research, as summarized in Table 1. The analysis aims to
provide a comprehensive understanding of the evolution of intrusion detection system (IDS) research and to position
the present study within the existing body of work. Over the years, IDS methodologies have evolved from classical
offline evaluations using benchmark datasets to more dynamic, real time detection settings. In particular, recent
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Table 1: Previous Related Works in Intrusion Detection Systems using Deep Learning.

Year/Ref. Method Temporal Imbalance Data Target Multitask Dataset Result
Handling
Research employing Classical IDS Benchmark Datasets

2017 [18] Recurrent Neural Yes No Binary No KDD99 Accuracy 97.5%
Network (RNN- Multiclass Precision 96%
IDS)

2018 [19] Stacked Non- No No Binary No KDD99, NSL- Accuracy 97.9%
symmetric Deep Multiclass KDD F1-score 97%
Autoencoder +
Random Forest
(NDAE+RF)

2019 [20] Deep Neural No No Binary Yes KDDCup99, NSL-  Accuracy 99.2%
Network (Scale- Multiclass KDD, UNSW- F1-score 98.7%
Hybrid-IDS- NB15, Kyoto,

AlertNet) CICIDS2017

2022 [21] Deep Neural No No Binary Yes UNSW-NB15, Improved
Network (DNN) CICIDS2017 performance (not
+ Multi-Task numerically stated)
Learning (MTL)

2023 [22] DNN + filter-based No Generative Binary No UNSW-NB15 Accuracy 84%
feature selection Adversarial Multiclass (without GAN)
+ GAN synthetic Network (GAN) Accuracy 91%
data (with GAN)

2023 [23] CNN No No Binary No NSL-KDD, BoT- Accuracy 99.1%
+ CapSA (Hybrid Multiclass IoT, KDD99, Precision 98.9%
evaluation) CIC2017 Recall 98.7%

Research employing Real-time and IoT-oriented IDS Datasets

2023 [24] Stacking ensemble  Yes No Binary No ToN_IoT, Accuracy 99.4%
(CNN + LSTM + Stratified KFold Multiclass CICIDS2017, FPR < 1%

GRU + DNN) to preserve labels SwaT
ratio

2023 [25] Ensemble of RNNs  Yes No Multiclass No IoT benchmark Accuracy 98.5%
(LSTM + GRU) datasets Precision 98%

+ Harris Hawk Recall 97.8%
Optimization

2023 [26] FFNN, LSTM, Yes Synthetic Minority ~ Binary No CIC-IoT22 F1-Score:
Random Neural Oversampling FFNN 99.93%
Network (SMOTE) LSTM 99.85%
(RandNN) RandNN 96.42%

2024 [27] CNN-GRU hybrid  Yes No Multiclass No N_BaloT Accuracy 99.8%
(AttackNet) Precision 99.8%

Recall 99.7%

2025[28] Self-supervised Yes No Binary No 7 TSAD real-world  F1-score 97.2%
Contrastive datasets AU-PR 98%
Learning
(CARLA)

studies have explored diverse frameworks such as Deep Learning (DL) and Multi-Task Learning (MTL) to enhance
detection performance across both traditional and IoT oriented environments. These developments form the basis
for the comparative overview presented in the next section.

Table 1 summarizes deep learning based IDS studies, categorized by dataset type (classical and real-time
IoT). This grouping illustrates the gradual evolution from traditional offline evaluation to modern IoT based and
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streaming detection. Since these studies differ in their goals and evaluation settings, the performance results are
reported as presented in the original papers. They should be interpreted alongside the “Imbalance Data Handling”
column, as all benchmark and IoT datasets are naturally imbalanced and were managed using the methods listed in
that column.

Based on the datasets reviewed in Table 1, several classical benchmarks such as KDD99 [29], NSL-KDD [29],
and UNSW-NB15 [30] were developed under controlled or synthetic conditions that no longer reflect the complexity
of contemporary network traffic. Prior studies have critically noted that these datasets oversimplify attack behaviors
and fail to represent the dynamic and heterogeneous characteristics of real world IoT environments [31], [32].
Consequently, models trained on such data often suffer from overfitting and limited generalization. While these
datasets remain valuable for reproducibility and benchmarking, their restricted realism constrains the meaningful
evaluation of modern deep learning based IDS models. In response, more recent datasets have shifted toward IoT
oriented and temporally dynamic traffic, underscoring the growing need for IDS approaches capable of learning
from imperfect, evolving, and heterogeneous data.

Several recent studies have explored deep learning and multitask learning approaches for intrusion detection in
IoT environments, each addressing different challenges with varying degrees of success. Sanju et al. [23] proposed
the MM-WMVEDL model, a hybrid intrusion detection framework that combines metaheuristic optimization with
an ensemble of LSTM and GRU networks to handle the physical and functional heterogeneity of IoT systems,
achieving an accuracy of 98.12%. However, this approach relied on a computationally intensive single task archi-
tecture and did not incorporate explicit mechanisms for class imbalance mitigation or zero day attack evaluation,
limiting its adaptability to unseen traffic conditions.

In contrast, Albelwi et al. [19] introduced a Multi-Task Deep Learning (MTDL) framework integrating
contrastive learning and supervised clustering to enhance feature representation and improve cross-dataset gener-
alization. The model achieved accuracies ranging from 95.5% to 99.9% across NSL-KDD, AWID, and BoT-IoT
datasets. Despite these promising results, the framework primarily emphasized spatial feature extraction and lacked
temporal modeling an essential component for capturing the dynamics of IoT traffic.

Elsayed et al. [24] developed SATIDS, a two level LSTM based multitask architecture designed to classify
both attack categories and subtypes, achieving 96.35% accuracy in IoT environments. However, the system was
evaluated using closed set testing on a single dataset, without cross dataset or unseen attack validation, thereby
limiting its ability to detect zero day intrusions. Although the multitask structure reduced overfitting, it continued
to face severe class imbalance and insufficient generalization to novel attack patterns.

Overall, studies such as MM-WMVEDL, MTDL, and SATIDS have made significant contributions to improv-
ing intrusion detection performance in IoT environments. Nevertheless, several limitations remain. A comparative
analysis of these studies reveals three major challenges. First, many IoT-oriented IDS models still depend on
outdated or homogeneous datasets, which limits their ability to generalize across diverse and evolving network
conditions. Second, although multitask learning improves generalization across attack categories, most architectures
continue to process tasks independently, with minimal aggregation or feature fusion mechanisms between learning
branches. The absence of explicit fusion strategies such as gated, additive, or attention based integration reduces
these models’ capacity to share complementary representations and jointly optimize across related tasks. Third, the
temporal characteristics of IoT traffic are often underutilized; random batching or non sequential training disrupts
flow level continuity and weakens the model’s capacity to capture long range dependencies and temporal correla-
tions. Collectively, these shortcomings highlight the need for IDS frameworks that integrate temporal modeling,
inter task collaboration, and effective fusion driven learning while maintaining robustness to data imbalance direc-
tions that form the conceptual foundation of the present study. In particular, the proposed approach extends beyond
existing fusion paradigms by introducing structured additive, gated, and cross attention mechanisms that enable
dynamic and interpretable information exchange between tasks, addressing limitations observed in prior multitask
IDS architectures.
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Fig. 1: Overview of the five main components. The Stacked Dual-Path LSTM (Component 2) is described in detail in Fig. 2, while the full
training procedure is presented in Fig. 3.

To address these challenges, this study proposes a Stacked Dual-Path LSTM Encoder that integrates three
aggregation mechanisms Additive, Gated, and Cross Attention to facilitate effective information exchange between
anomaly detection and attack type classification tasks. Unlike conventional fusion strategies such as feature
concatenation or shared layer multitask learning, the proposed architecture establishes structured communication
pathways that explicitly regulate inter task interactions and feature alignment, enhancing cooperative representation
learning. This design offers a more flexible and interpretable alternative to existing fusion schemes by allowing
dynamic information exchange between tasks, instead of depending on static feature combination or limited
parameter sharing. To further strengthen model robustness, the design incorporates imbalance aware optimization
through a weighted focal loss, along with a structured shuffling mechanism that preserves flow level temporal
topology during training, enabling more realistic modeling of IoT traffic. Additionally, this study investigates the
influence of encoder depth, comparing three and four layer configurations to evaluate their effects on the richness
and stability of temporal representations. Overall, the proposed framework establishes a comprehensive and resilient
foundation for IoT intrusion detection, effectively overcoming the architectural and data centric limitations that
remain unaddressed in prior studies.

3. Proposed Method

The proposed model is a multi-task temporal deep learning architecture designed to accurately detect attacks
in IoT networks while simultaneously identifying their attack types. The system processes flow-based packet
sequences in order to preserve temporal dependencies, which are a critical characteristic of IoT communication
traffic patterns. An overview of this system are shown in Fig. 1.

Overall, the architecture consists of five main components, described as follows:

1. Preprocessing and Flow Construction Stage
This stage transforms raw network packets into structured sequential representations based on network flows,
enabling consistent temporal modeling of packet-level information.

2. Stacked Dual-Path LSTM Encoder for Binary and Multi-Class Prediction
The encoder learns temporal patterns from both normal and malicious traffic by modeling sequential depen-
dencies across packet flows.

3. Inter-Path Aggregation Module at Each Encoder Layer
This module facilitates knowledge sharing from the binary anomaly detection task to the multi-class attack
classification task, improving representational consistency across tasks.
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4. Dual Prediction Head
The model produces two outputs simultaneously: anomaly detection (binary classification) and attack type
identification (multi-class classification).

5. Multi-Task Training Procedure
Model training employs a combination of Focal Loss and gradient-based optimization to effectively address
class imbalance and stabilize multi-task learning.

The multi-task learning strategy hypothetically enables generalization to previously unseen (zero-day) attacks
while increasing training efficiency by jointly learning both tasks within a single integrated model.

3.1. Preprocessing and Flow Construction Stage

After data cleaning and feature selection, the dataset is reorganized based on (flow_id, flow_seq) pairs. Each
flow represents a sequence of packets originating from the same network connection, ordered by increasing time-
stamps. The flow construction in this study utilizes heuristics optimized for TCP and UDP traffic, which constitute
the vast majority of the network communications in the benchmark datasets. This approach ensures reliable flow
aggregation for connection-oriented protocols. A detailed discussion regarding the applicability of these heuristics
to other protocol types is provided in section 5.

The flow construction in this study follows protocol-specific heuristics primarily designed for TCP and UDP
traffic, which dominate the benchmark datasets used. While this approach provides reliable flow aggregation for
connection-oriented communication, its direct applicability to non-TCP/UDP traffic (e.g., ICMP or CoAP) is limited
and remains a direction for future enhancement. Each packet within a flow contains three main components:

1. Flow identifiers, consisting of flow_id and flow_seq, which indicate the flow identity and the packet order
within the flow;

2. Selected and encoded numerical features; and

3. Attack class labels, where 0 denotes normal traffic and 1-14 correspond to different attack types.

Before the training data are fed into the model, a shuffling mechanism is applied that preserves the packet
order (topology) within each flow while allowing reordering across different flows. Furthermore, this mechanism
is referred to as topology-constrained shuffling. Mathematically, this mechanism can be formulated as sampling
a global permutation ¢ from a restricted permutation space that preserves intra-flow temporal ordering while
permitting arbitrary inter-flow rearrangement.

Let S, = (si,l, ;2553 ..) denote the packet sequence of flow-i in the dataset, where each packet s; ; repre-
sents the j-th packet of flow sequence S;. The global permutation o is constrained to satisfy s; ; <'s; , = ‘7(31‘, j) <
a(s@ k), which ensures that the temporal causality of packets belonging to the same flow is strictly preserved. Here,
o(s) denotes the position of packet s in the permuted sequence induced by o.

Formally, the topology-constrained shuffling operation could be defined as:
H=(ceS| S ;= Sk = a(sm’) < U(SM)) (1)

In equation (1), H represents the resulting shuffled sequence (denoted using parentheses) obtained by applying
the constrained permutation o to the flattened flow sequence S.

This strategy enables the model to learn valid temporal patterns within individual flows while mitigating
unintended dependencies on static network topology or fixed inter-flow ordering. The resulting structured sequence
tensors serve as input to the temporal feature extraction stage of the Stacked LSTM Encoder.

3.2. Stacked Dual-Path LSTM Encoder for Binary and Multi-Class Prediction

The temporal feature extraction stage is implemented using multiple layers of a Stacked Dual-Path LSTM
Encoder, as illustrated in Fig. 2. Each traffic flow is processed sequentially to capture both short-term and long-
term temporal dependencies inherent in IoT network traffic. This design explicitly models the sequential nature of
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Fig. 2: Stacked Dual-Path LSTM Encoder; Deep Learning Architecture.

packet-level flows, which is essential for accurately characterizing normal communication behavior as well as the
temporal dynamics of network attacks.

At each encoder layer, two parallel LSTM blocks are employed to serve distinct yet complementary learning
objectives. Specifically:
1. Binary Path, which focuses on discriminating between normal and malicious traffic, and
2. Multi-Class Path, which aims to learn fine-grained temporal patterns associated with different attack cate-
gories.

Both paths share the same recurrent formulation but operate on task-specific representations. The computa-
tions performed within each path are defined by the standard LSTM recurrence and subsequent post-processing
operations. Let -, € R? represents input vectors at position-¢ in the sequence with dimension-d, each LSTM layer
could formally defined as:

(hé". ") = LsTM(n; . 62, 0 )
(i X ;
0;’ = Dropout (ReLU (LayerNorm <ht ) > )

From equation (2), hgi) and cii) each correspond to hidden-state and cell-state output of LSTM block for
position-¢ in the sequence and layers-(i) (see Fig. 2). While oil) denote LSTM output (hidden-state h,(f)) followed
by layer normalization, nonlinearity function ReL U, and dropout.

The post-processing stage serves multiple purposes: layer normalization stabilizes hidden-state distributions
and mitigates exploding gradients, the ReL U activation alleviates vanishing gradient issues by promoting sparse
and non-linear representations, and dropout reduces the risk of overfitting by introducing stochastic regularization.
Although applying ReL.U after LSTM is less common in conventional sequence models, in this architecture we
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hypothesize ReL U could helps maintain stable gradient flow and enhances non-linear feature expressiveness across
stacked recurrent layers. This design follows the normalization principles introduced in Layer Normalization [33],
which have been shown to improve training stability and gradient propagation in deep sequential models. The
necessity of this component was empirically validated through ablation studies, which are detailed in Section 4.4.

3.3. Inter-Path Aggregation Module at Each Encoder Layer

Before the input features are fed into the Multi-Class LSTM block, an inter-path aggregation process is applied
using the feature representations produced by the Binary LSTM block. The primary objective of this mechanism
is to facilitate knowledge transfer from the simpler task (binary anomaly detection) to the more complex task of
multi-class attack classification. This asymmetric flow is intended to maintain the distinct functional roles of the
dual-path architecture. By injecting coarse-grained, anomaly-aware information into the multi-class pathway, the
model is guided to learn temporal representations that are more informative and discriminative for distinguishing
among attack types with similar traffic patterns.

The aggregation function in equation (3), (4) and (6), denoted as Agg( ., .), combines the feature representations
I(fml;) and oblzl which correspond to the output of the (i — 1)-th layer of the multi-class LSTM path and the output of
the (7)-th layer of the binary LSTM path, respectively. This aggregation function is configurable and varies across

experimental settings. In this study, three aggregation strategies are investigated:
1. Additive Aggregation

1 i—1 i
Agg( niultl)’ O}E)lll) = Or(nultl) + O’E)ln (3)
Aggregation function defined in equation (3) directly sums the representations from both paths without
applying any feature selection or weighting mechanism.

2. Gated Aggregation
i i—1 %
Agg( I(I]ultl)’ 01(31n> - I(nulu) (1 - tanh( )) + O'E)izl ta‘nh(g)

(i=1) 4 (9) @)

g = % (Omulti @ Obin)

In aggregation function defined with equation (4), g is the gating vector from transforming the concatenated

(&) outputs with learnable parameters W,. The hyperbolic tangent activation is defined on equation (5) with
e defined as euler constant:

et —e ®

tanh(z) = prp—
e*+e*

(5)

The tanh function defined in equation (5) is chosen because LSTM outputs after ReLU lie in [0, +00),
where sigmoid quickly saturates and limits gating flexibility into [%, 1] . In contrast, tanh provides a smoother
nonlinearity with a wider effective dynamic range, and can be linearly shifted to [0, 1] for gating. This improves
gradient flow and enables more expressive modulation of inter-path feature contributions.

3. Cross-Attention Aggregation

Agg( mult1)7 Ol(nn) Attentlon( I(nultl)’ 01()217 01()1121) (6>

This aggregation function defined in equation (6) use attention mechanism that defined in equation (7), as:
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over a predefined number of iterations.

T
Attention(Q, K, V') = softmax C\Q/d_ 1%
k
Q = W,y0puns (7)

K =W, 0}(321
V = W,o\)

Equation (7) is a standard scaled dot-product attention introduced by Vaswani et al [34]. In our setting,
attention aggregation used to perform cross-attention between binary and multi-class output with W, W, and
W,, each a learnable parameter, and softmax is activation function defined as:

softmax(z) = Z—i (8)

2 j=1 Zj
In equation (8), x,; corresponds to each element in input vector z, and K as the dimension of input vector z.

This formulation allows the multi-class representation to selectively attend to binary-path features based on
contextual relevance, enabling fine-grained feature alignment across tasks.

After all encoder layers are processed, the final temporal representation is used to generate two model outputs.
The Binary Classification Head distinguishes normal traffic from attack traffic, while the Multi-Class Classification
Head identifies specific attack types. Each output is produced through a dedicated dense layer and optimized using
a task-specific loss function. This design allows the model to jointly learn both classification objectives within a
single, efficient end-to-end architecture.
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3.4. Multi-Task Loss-Based Training Procedure

The model training process follows the workflow illustrated in Fig. 3, which consists of three main stages:
batch sampling, training step, and loss computation, followed by an evaluation of the model’s capability on testing
datasets.

During the batch sampling stage, a subset of flows is randomly selected from the training set. These flows are
then organized into packet sequences using topology-constrained shuffling we explained before. Then, the resulting
batches are processed in the training step, where each packet sequence is forwarded through the Stacked Dual-
Path LSTM Encoder and the Inter-Path Aggregation Module. This process produces two prediction outputs: binary
classification logits for anomaly detection and multi-class classification logits for attack type identification. Both
outputs are subsequently evaluated using their respective loss functions.

The loss computation stage involves calculating and aggregate the Binary Prediction Loss and the Multi-Class
Prediction Loss, both of which employ weighted Focal Loss to address class imbalance. The weighted Focal Loss
is defined as:

£= =3 a1 5,) log(i) )

In equation (9), «; denotes the loss weight for class ¢ which on our experiment setting defined as the inverse
of square root number of samples belonging to that class. While ¢, and y,; each corresponds to predicted class
probability and actual class label from dataset, respectively.

4. Experiments & Result

Data preprocessing and feature selection were conducted in a Google Colab Pro environment without GPU
acceleration. Deep learning model training was performed in a Kaggle environment using an NVIDIA Tesla P100
GPU. Further details regarding the datasets, experimental configuration, and evaluation results are provided in the
following subsections.

4.1. Dataset

The primary dataset used in this study is Edge-IToTset [35], [36], which consists of network traffic captures in
PCAP format. The dataset contains 14 attack categories (excluding the normal class) and comprises over 21 million
packets distributed across more than 11 million network flows. Furthermore, this dataset exhibits severe class
imbalance: the dominant class (normal traffic flows) accounts for more than 50% of the samples, while minority
classes such as MITM (Man-in-the-Middle) and Fingerprinting attacks each represent less than 0.01% of the data,
and a there are 8 class that represented by less than 1% of the data. Feature selection was performed based on
domain knowledge, and relevant packet fields were extracted using the Wireshark network analysis tool [37].

Packet-to-flow assignment was conducted by grouping packets according to the tcp.stream and udp.stream
identifiers. For ARP traffic, which lacks transport-layer stream identifiers, packets were grouped based on source
and destination IP addresses. For training and model evaluation, the dataset was split at the flow level, with 20%
of flows reserved for the test set and the remaining flows used for training and validation.

4.2. Models & Training Configuration

The aim of this study is to conduct a comparative analysis of different model configurations. Two hyperpara-
meters are considered as experimental variables: (1) the depth of the LSTM layers; and (2) the aggregation function
used to combine the outputs of the binary and multi-class prediction paths (see Fig. 2). We also train a baseline
model that consist of stacked LSTM Block with only multi-class classification objective. A summary of the model
configurations, including the total number of parameters, is presented in Table 2. Our baseline model (with id:
BASE) are configured so that the number of trainable parameters are comparable with every other models. Model
identifiers are also provided to facilitate reference during the results analysis.
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Table 2: Experiment models configuration and total number of trainable parameters.

Model ID Aggregation Layers Hidden Number of
Depth Dimension Trainable Parameters

BASE - 8 256 9 037 840
ADD-3 Addition 3 256 6 226 448
ADD-4 Addition 4 256 8595 472
GAT-3 Gated 3 256 6 489 104
GAT-4 Gated 4 256 8989 456
ATT-3 Attention 3 256 6752 784
ATT-4 Attention 4 256 9 384 976

All models listed in Table 2 were trained using a consistent configuration to ensure a fair comparison. Each
model was optimized with the AdamW optimizer [38] using a default weight decay of 0.01, which provides
sufficient regularization as established in modern deep learning literature. We selected an initial learning rate of
2 x 1079 for all experiments. The adaptive nature of AdamW makes the training procedure less sensitive to the
initial learning rate choice compared to standard Stochastic Gradient Descent (SGD). Models were trained for 100
epochs with a batch size of 192, and the best-performing iteration was selected based on the lowest validation loss
to ensure optimal convergence.

4.3. Evaluation Metrics
Two evaluation metrics were adopted to compare the experimental results. The first metric is the macro-
averaged F1-score, defined as:

_2PrRe

= - 1
Y™ Pr+ Re (10)

The second metric is the macro-averaged area under the Precision-Recall curve (AUC-PR), which is formally
defined as:

AUC-PR = / Pr(Rc) dRc (11)

In equation (10) and (11), Pr and Rc each denote a precision and recall, respectively. recision measures the
accuracy of positive predictions and is defined as the ratio of correctly predicted positive samples to all predicted
positive samples. Recall measures the completeness of positive predictions and is defined as the ratio of correctly
predicted positive samples to all actual positive samples. Formally, computation of precision and recall are defined
on equation (12):

p__ P

TP+ FP b
o (12
‘T TPYFN

Where TP, FP, and FN represent the number of true positives, false positives, and false negatives, respectively.
Macro-averaged F1-score and AUC-PR are selected due to their robustness in evaluating model performance under
class-imbalanced conditions, which is a critical requirement for intrusion detection systems.

4.4. Experimental Results

After the training and validation procedures, the best-performing model from each experiment was evaluated
on the test set. A summary of the evaluation results is presented in Table 3. Compared with the baseline model, all
proposed architectures achieve better performance on the multi-class classification task and significantly outperform
the baseline in binary classification. This performance improvement can be attributed to the fact that the baseline

159



C. B. Sabdana et al. — Multi-task Temporal Deep Learning Model for Real Time Intrusion Detection System

Table 3: Experiment results evaluated on test set. Every evaluation measurement are expressed as percentage point (%). For multi-class

evaluation, the scores are aggregated with macro-aggregation. Binary F1-score results for the baseline method are computed by binarizing the

model outputs. Columns 3 and 7 report the p-value assessing the statistical significance of the proposed model against the additive aggregation
model with the same number of layers. Column 6 reports the p-value comparing the proposed model against the baseline.

Model ID Binary Prediction Multi-class Prediction

Fl-score T p-value Fl-score T AUC-PR T p-value p-value

vs. ADD vs. BASE vs. ADD

BASE 79.41 - 28.65 30.04 - -
ADD-3 97.24 - 31.02 35.59 <0.0001 -
ADD-4 97.27 - 30.56 32.79 0.0007 -
GAT-3 97.47 0.0741 30.80 33.93 <0.0001 0.2868
GAT-4 97.32 0.1329 32.81 38.64 <0.0001  0.0059
ATT-3 97.22 0.7254 34.25 37.08 <0.0001 0.0008
ATT-4 97.15 0.6932 34.02 40.08 <0.0001  0.0002

model is trained solely to minimize a multi-class loss, whereas the proposed multi-task architectures employ
separate classification heads optimized specifically for each objective.

Overall, every models achieve comparably high binary F1-scores (above 97%, see Table 3), indicating that
distinguishing normal versus malicious traffic is not a difficult task. In contrast, multi-class performance shows
substantial variation. Attention-based models (ATT-3 and ATT-4) consistently outperform ADD and GAT variants in
both macro F1-score and AUC-PR, achieving consistently higher macro F1-score and AUC-PR under severe class
imbalance compared to ADD and GAT variants. Notably, model with attention aggregation with 3 layers achieves
the highest macro F1-score, while same model with 4 layers yields the best AUC-PR, indicating a trade-off between
balanced per-class accuracy and ranking quality. To rigorously validate this observation, McNemar’s tests were
conducted between paired model variants with identical encoder depth. For the multi-class prediction, the attention-
based models outperform both additive and gated variants (p-value < 0.05, see Table 3), confirming the robustness
of the observed improvements. While for the binary classification, the results indicate no statistically significant
differences across model pairs (p-value > 0.05), suggesting that binary intrusion detection performance is largely
saturated.

To evaluate the impact of the post-LSTM ReL.U activation, we compared our best performing models with
attention aggregation and 4 layers depth against similar setup with the ReL U layer removed. Experimental results
showed that removing the activation led to a decrease in multi-class F1 Score from 34.02% to 29.28%, and decrease
in area under PR-curve from 40.08% to 34.69%. This suggests that the Rel.U layer is essential to enhances non-
linear feature across stacked recurrent layers before the final aggregation stage.

As shown in Fig. 4, all models exhibit degraded performance under extreme class imbalance. For minority
classes such as MITM and Fingerprinting, none of the models produce positive predictions, which is reflected
by near-diagonal precision-recall curves. In contrast, higher precision-recall performance is observed for majority
classes, including Normal traffic, DDoS TCP SYN Flood, DDoS UDP Flood, and DDoS ICMP Flood attacks.

5. Discussion

This study investigates how architectural choices in multi-task temporal models, specifically inter-path
aggregation mechanisms and encoder depth affect intrusion detection models performance in IoT network traffic.
From last section, we could observe that all evaluated models achieve consistently high performance on coarse-
grained anomaly detection, but their ability to discriminate between attack types varies substantially. The findings
demonstrate that while binary intrusion detection is largely saturated, architectural choices substantially impact
fine-grained attack discrimination under severe class imbalance.
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Fig. 4: Precision-Recall curves on the test set. The first column corresponds to models with three layers, whereas the second column corresponds
to models with four layers. The top, middle, and bottom rows represent models with addition, gated, and attention aggregation functions,
respectively.

From Table 3, it can be observed that attention-based aggregation consistently outperforms both additive and
gated variants, even when using fewer layers and parameters (e.g., ATT-3 compared with ADD-4 and GAT-4 in
Table 2). This indicates that selective, context-aware information transfer from the binary path is more effective
than uniform or static fusion mechanisms for supporting multi-class attack classification. By dynamically weighting
anomaly-relevant temporal features, the attention mechanism allows the multi-class path to focus on discriminative
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subsequences that differentiate attacks with similar flow-level behavior. The comparison between three- and
four-layer encoders reveals a depth-related trade-off between per-class balance and ranking quality. Shallower
models tends to achieve higher macro F1-scores (supported by ADD and ATT variants), indicating more uniform
performance across classes, while deeper encoders yield superior AUC-PR (supported by GAT and ATT variants),
reflecting improved confidence calibration and ranking of positive samples. This suggests that deeper temporal
abstraction benefits probability estimation but may amplify bias toward dominant classes, especially when minority
samples are scarce.

Several limitations should be acknowledged. First, the extreme rarity of certain attack classes, such as MITM
and Fingerprinting, prevents meaningful learning regardless of aggregation strategy, indicating that extreme class
rarity imposes fundamental limits on purely loss-based re-weighting, and highlights the importance of comple-
mentary strategies such as data selection or rebalancing techniques, which remain outside the scope of this study.
Second, flow construction relies on protocol-specific heuristics, which may limit generalization to alternative traffic
representations. Third, the aggregation mechanism is designed as a unidirectional information transfer from binary
classification to multi-class classification to avoid feature homogenization, where symmetric information exchange
might cause the distinct temporal and structural features of each path to converge and become redundant, we
acknowledge that this prevents the model from capturing potential bidirectional dependencies. Finally, evaluation
is confined to a single dataset, restricting conclusions about cross-domain robustness. Nevertheless, the consistent
gains from attention-based aggregation and topology-constrained shuffling provide strong evidence that structured
temporal modeling and task-aware information sharing are critical for advancing IoT intrusion detection beyond
binary classification.

6. Conclusion

In this study, we propose and evaluate several deep learning architectures for identifying attack behavior in
IoT network traffic. The proposed models employ stacked LSTM layers to jointly address two objectives: binary
classification (normal versus attack) and multi-class classification (attack type identification). We investigate the
effects of varying encoder depth and inter-path aggregation strategies to facilitate knowledge sharing between the
binary and multi-class prediction tasks. The experimental results indicate that context-aware information transfer
from the binary path more effectively supports attack-type classification than static fusion mechanisms. In addition,
to better approximate real-time network traffic conditions during training, a topology-constrained shuffling strategy
is introduced, which improves model generalization to previously unseen temporal sequence patterns.

As stated in the previous section, this work is limited by the use of heuristic flow construction and evaluation
on a single dataset, Edge-IToTset. Accordingly, future work will incorporate richer structural information, such as
explicit flow-level identifiers or learned flow embeddings, while extending the preprocessing module to handle a
broader range of protocols beyond TCP and UDP. Furthermore, we intend to evaluate cross-dataset generalization
to assess robustness under different traffic distributions, as well as conduct inference-time performance analysis to
better characterize the suitability of the proposed models for real-time intrusion detection systems.
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