
JUTI: Jurnal Ilmiah Teknologi Informasi – Volume 24, Number 1, January 2026: 149 – 164

Multi-task Temporal Deep Learning Model for Real Time Intrusion

Detection System

Christian Budhi Sabdana 1,*), Noriandini Dewi Salyasari 2), Izra Noor Zahara Aliya 3), and

Ary Mazharuddin Shiddiqi 4)

1) SAP Division, PT 360 Teknologi Indonesia

Jakarta, Indonesia

2) Information Technology and Information Systems Division, RSUD dr Soedono Provinsi Jawa Timur

Madiun, Indonesia

3) Finance System Division, PT Social Bella indonesia

Jakarta, Indonesia

4) Department of Informatics, Institut Teknologi Sepuluh Nopember

Surabaya, Indonesia

E-mail: cbsabdana@gmail.com1), salyasari@gmail.com2), izra.aliya28@gmail.com3), and ary.shiddiqi@its.ac.id4)

ABSTRACT

The rapid expansion of Internet of Things (IoT) ecosystems has enabled large-scale interconnected smart environments

while simultaneously exposing IoT devices to increasingly sophisticated cyber threats. To address these challenges, machine

learning and deep learning based intrusion detection systems (IDS) have been widely adopted; however, many existing

approaches suffer from insufficient temporal modeling, and poor performance under extreme class imbalance. In this study,

we investigate a multi-task stacked Long Short-Term Memory (LSTM) architecture for IoT intrusion detection, where binary

anomaly detection and multi-class attack classification are jointly learned within a unified temporal framework. The proposed

model examines different inter-path knowledge transfer mechanisms, including additive, gated, and attention-based aggrega

tion, to enhance discriminative attack representation learning. A topology-constrained shuffling strategy is further introduced to

preserve intra-flow temporal dependencies while reducing reliance on fixed traffic ordering. Experimental results on the Edge-

IIoTset dataset show that all models achieve high binary detection performance (F1-score above 97%), while attention-based

aggregation consistently outperforms static fusion strategies for multi-class classification, yielding superior macro F1-score

and AUC-PR under severe class imbalance. These findings emphasize the importance of context-aware information sharing

and temporal structure preservation for robust and adaptive IoT intrusion detection systems.

Keywords: Intrusion detection system, temporal deep learning, multi-task prediction, long-short term memory.

1. Introduction

The rapid growth of the Internet of Things (IoT) ecosystem has led to the deployment of large-scale inter

connected intelligent devices, ranging from industrial systems to household sensors [1]. The Internet of Things

represents a new phase in the evolution of the internet, in which physical objects are equipped with sensing

capabilities and the ability to communicate with one another. This technology has been widely adopted across

various industrial sectors [2].

However, numerous studies [3], [4], [5] have shown that IoT devices exhibit a high level of vulnerability

due to the heterogeneity of their networks, limited security capabilities, and massive deployment scale. These

conditions enable attackers to compromise millions of IoT devices and incorporate them into botnets, which are then

leveraged to launch large-scale distributed denial-of-service (DDoS) attacks that overwhelm networks and disrupt

* Corresponding author.

Received: December 22nd, 2025. Revised: December 26th, 2025. Accepted: January 4th, 2026.

Available online: January 15th, 2026.

© 2026 The Authors. This is an open access article under the CC BY-SA license (https://creativecommons.org/licenses/by-sa/4.0/)

DOI: https://doi.org/10.12962/j24068535.v24i1.a1446

149

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.12962/j24068535.v24i1.a1446

C. B. Sabdana et al. – Multi-task Temporal Deep Learning Model for Real Time Intrusion Detection System

server operations [6]. Consequently, there is a pressing need for intrusion detection approaches that go beyond

static data characteristics and are capable of capturing the temporal dynamics of network traffic while adapting to

heterogeneous operational environments [7].

Machine Learning (ML) and Deep Learning (DL)-based intrusion detection methods have been increasingly

adopted in IoT environments, as they demonstrate higher detection accuracy than traditional rule-based techniques

[1], [8]. Prior research indicates that algorithms such as Support Vector Machines (SVM), Random Forests, Neural

Networks, Long Short-Term Memory (LSTM) networks, and Convolutional Neural Networks (CNN) are effective

in enhancing IoT security [6], [9], [10]. Nevertheless, many of these approaches still suffer from significant

generalization limitations when deployed on real-time data [11]. A considerable number of studies design their

models to operate on aggregated flow-level features or apply recurrent architectures to packets that have already

been grouped into flows [12]. While these techniques perform well under experimental conditions, they introduce

substantial computational overhead when flow reconstruction must be performed in real time [12], [13]. Moreover,

such models often achieve optimal performance only on the datasets used during training, while their effectiveness

degrades markedly when applied to different domains or previously unseen attack scenarios [14]. This limitation is

primarily attributed to reliance on device-specific features, training processes that insufficiently capture the temporal

structure of traffic flows, and a lack of rigorous cross-dataset evaluation that reflects real-world variability [11],

[13]. Therefore, more adaptive modeling approaches capable of abstracting features at a higher and more generic

level are critically needed for modern IoT security systems.

Motivated by these challenges, this study proposes an IoT intrusion detection model based on a Multi-Task

Stacked LSTM architecture combined with an adaptive feature engineering strategy to enhance cross-domain

attack pattern understanding. The Multi-Task Stacked LSTM integrates multi-task learning with stacked LSTM

layers, enabling the model to learn complex temporal patterns while simultaneously addressing multiple related

tasks. This approach improves both learning efficiency and generalization capability and has been successfully

applied to various time-series problems [15], [16], [17]. Rather than relying solely on static representations, the

proposed method exploits sequential traffic information without performing flow-level grouping or aggregation.

Feature selection is guided by domain knowledge to emphasize device-agnostic characteristics and avoid over-

fitting to specific physical device attributes. In addition, a gated aggregation mechanism is employed during node

representation fusion to highlight the most relevant features for classification.

The contributions of this research are twofold. First, this study proposes a Multi-Task Stacked LSTM-based

intrusion detection framework that jointly models temporal dependencies in IoT network traffic while learning

multiple related detection objectives, enabling more effective representation learning for sequential traffic patterns.

Second, an adaptive feature engineering strategy guided by domain knowledge is introduced to prioritize device-

agnostic and flow-relevant features, thereby reducing dependence on hardware-specific attributes. This strategy

is further supported by a shuffling mechanism, which preserves temporal ordering within traffic flows without

requiring expensive real-time flow reconstruction.

The rest of this article is organized as follows. Section 2 presents multiple related research on Intrusion

Detection System using Deep Learning algorithm. Section 3 describes the research methodology, including the

experimental design for attack prediction and temporal modelling to train the models. Section 4 reports the

experimental results with comparison between multiple architecture design. Section 5 discusses the key findings,

analysis, implication of our experimental results, and the limitation of this works. Section 6 concludes the research

and provides directions for further study.

2. Related Works

This section reviews prior studies relevant to this research, as summarized in Table 1. The analysis aims to

provide a comprehensive understanding of the evolution of intrusion detection system (IDS) research and to position

the present study within the existing body of work. Over the years, IDS methodologies have evolved from classical

offline evaluations using benchmark datasets to more dynamic, real time detection settings. In particular, recent

150

JUTI: Jurnal Ilmiah Teknologi Informasi – Volume 24, Number 1, January 2026: 149 – 164

Table 1: Previous Related Works in Intrusion Detection Systems using Deep Learning.

Year/Ref. Method Temporal Imbalance Data

Handling

Target Multitask Dataset Result

Research employing Classical IDS Benchmark Datasets

2017 [18] Recurrent Neural

Network (RNN-

IDS)

Yes No Binary

Multiclass

No KDD99 Accuracy 97.5%

Precision 96%

2018 [19] Stacked Non-

symmetric Deep

Autoencoder +

Random Forest

(NDAE+RF)

No No Binary

Multiclass

No KDD99, NSL-

KDD

Accuracy 97.9%

F1-score 97%

2019 [20] Deep Neural

Network (Scale-

Hybrid-IDS-

AlertNet)

No No Binary

Multiclass

Yes KDDCup99, NSL-

KDD, UNSW-

NB15, Kyoto,

CICIDS2017

Accuracy 99.2%

F1-score 98.7%

2022 [21] Deep Neural

Network (DNN)

+ Multi-Task

Learning (MTL)

No No Binary Yes UNSW-NB15,

CICIDS2017

Improved

performance (not

numerically stated)

2023 [22] DNN + filter-based

feature selection

+ GAN synthetic

data

No Generative

Adversarial

Network (GAN)

Binary

Multiclass

No UNSW-NB15 Accuracy 84%

(without GAN)

Accuracy 91%

(with GAN)

2023 [23] CNN

+ CapSA (Hybrid

evaluation)

No No Binary

Multiclass

No NSL-KDD, BoT-

IoT, KDD99,

CIC2017

Accuracy 99.1%

Precision 98.9%

Recall 98.7%

Research employing Real-time and IoT-oriented IDS Datasets

2023 [24] Stacking ensemble

(CNN + LSTM +

GRU + DNN)

Yes No

Stratified KFold

to preserve labels

ratio

Binary

Multiclass

No ToN_IoT,

CICIDS2017,

SWaT

Accuracy 99.4%

FPR < 1%

2023 [25] Ensemble of RNNs

(LSTM + GRU)

+ Harris Hawk

Optimization

Yes No Multiclass No IoT benchmark

datasets

Accuracy 98.5%

Precision 98%

Recall 97.8%

2023 [26] FFNN, LSTM,

Random Neural

Network

(RandNN)

Yes Synthetic Minority

Oversampling

(SMOTE)

Binary No CIC-IoT22 F1-Score:

FFNN 99.93%

LSTM 99.85%

RandNN 96.42%

2024 [27] CNN-GRU hybrid

(AttackNet)

Yes No Multiclass No N_BaIoT Accuracy 99.8%

Precision 99.8%

Recall 99.7%

2025 [28] Self-supervised

Contrastive

Learning

(CARLA)

Yes No Binary No 7 TSAD real-world

datasets

F1-score 97.2%

AU-PR 98%

studies have explored diverse frameworks such as Deep Learning (DL) and Multi-Task Learning (MTL) to enhance

detection performance across both traditional and IoT oriented environments. These developments form the basis

for the comparative overview presented in the next section.

Table 1 summarizes deep learning based IDS studies, categorized by dataset type (classical and real-time

IoT). This grouping illustrates the gradual evolution from traditional offline evaluation to modern IoT based and

151

C. B. Sabdana et al. – Multi-task Temporal Deep Learning Model for Real Time Intrusion Detection System

streaming detection. Since these studies differ in their goals and evaluation settings, the performance results are

reported as presented in the original papers. They should be interpreted alongside the “Imbalance Data Handling”

column, as all benchmark and IoT datasets are naturally imbalanced and were managed using the methods listed in

that column.

Based on the datasets reviewed in Table 1, several classical benchmarks such as KDD99 [29], NSL-KDD [29],

and UNSW-NB15 [30] were developed under controlled or synthetic conditions that no longer reflect the complexity

of contemporary network traffic. Prior studies have critically noted that these datasets oversimplify attack behaviors

and fail to represent the dynamic and heterogeneous characteristics of real world IoT environments [31], [32].

Consequently, models trained on such data often suffer from overfitting and limited generalization. While these

datasets remain valuable for reproducibility and benchmarking, their restricted realism constrains the meaningful

evaluation of modern deep learning based IDS models. In response, more recent datasets have shifted toward IoT

oriented and temporally dynamic traffic, underscoring the growing need for IDS approaches capable of learning

from imperfect, evolving, and heterogeneous data.

Several recent studies have explored deep learning and multitask learning approaches for intrusion detection in

IoT environments, each addressing different challenges with varying degrees of success. Sanju et al. [23] proposed

the MM-WMVEDL model, a hybrid intrusion detection framework that combines metaheuristic optimization with

an ensemble of LSTM and GRU networks to handle the physical and functional heterogeneity of IoT systems,

achieving an accuracy of 98.12%. However, this approach relied on a computationally intensive single task archi

tecture and did not incorporate explicit mechanisms for class imbalance mitigation or zero day attack evaluation,

limiting its adaptability to unseen traffic conditions.

In contrast, Albelwi et al. [19] introduced a Multi-Task Deep Learning (MTDL) framework integrating

contrastive learning and supervised clustering to enhance feature representation and improve cross-dataset gener

alization. The model achieved accuracies ranging from 95.5% to 99.9% across NSL-KDD, AWID, and BoT-IoT

datasets. Despite these promising results, the framework primarily emphasized spatial feature extraction and lacked

temporal modeling an essential component for capturing the dynamics of IoT traffic.

Elsayed et al. [24] developed SATIDS, a two level LSTM based multitask architecture designed to classify

both attack categories and subtypes, achieving 96.35% accuracy in IoT environments. However, the system was

evaluated using closed set testing on a single dataset, without cross dataset or unseen attack validation, thereby

limiting its ability to detect zero day intrusions. Although the multitask structure reduced overfitting, it continued

to face severe class imbalance and insufficient generalization to novel attack patterns.

Overall, studies such as MM-WMVEDL, MTDL, and SATIDS have made significant contributions to improv

ing intrusion detection performance in IoT environments. Nevertheless, several limitations remain. A comparative

analysis of these studies reveals three major challenges. First, many IoT-oriented IDS models still depend on

outdated or homogeneous datasets, which limits their ability to generalize across diverse and evolving network

conditions. Second, although multitask learning improves generalization across attack categories, most architectures

continue to process tasks independently, with minimal aggregation or feature fusion mechanisms between learning

branches. The absence of explicit fusion strategies such as gated, additive, or attention based integration reduces

these models’ capacity to share complementary representations and jointly optimize across related tasks. Third, the

temporal characteristics of IoT traffic are often underutilized; random batching or non sequential training disrupts

flow level continuity and weakens the model’s capacity to capture long range dependencies and temporal correla

tions. Collectively, these shortcomings highlight the need for IDS frameworks that integrate temporal modeling,

inter task collaboration, and effective fusion driven learning while maintaining robustness to data imbalance direc

tions that form the conceptual foundation of the present study. In particular, the proposed approach extends beyond

existing fusion paradigms by introducing structured additive, gated, and cross attention mechanisms that enable

dynamic and interpretable information exchange between tasks, addressing limitations observed in prior multitask

IDS architectures.

152

JUTI: Jurnal Ilmiah Teknologi Informasi – Volume 24, Number 1, January 2026: 149 – 164

Fig. 1: Overview of the five main components. The Stacked Dual-Path LSTM (Component 2) is described in detail in Fig. 2, while the full

training procedure is presented in Fig. 3.

To address these challenges, this study proposes a Stacked Dual-Path LSTM Encoder that integrates three

aggregation mechanisms Additive, Gated, and Cross Attention to facilitate effective information exchange between

anomaly detection and attack type classification tasks. Unlike conventional fusion strategies such as feature

concatenation or shared layer multitask learning, the proposed architecture establishes structured communication

pathways that explicitly regulate inter task interactions and feature alignment, enhancing cooperative representation

learning. This design offers a more flexible and interpretable alternative to existing fusion schemes by allowing

dynamic information exchange between tasks, instead of depending on static feature combination or limited

parameter sharing. To further strengthen model robustness, the design incorporates imbalance aware optimization

through a weighted focal loss, along with a structured shuffling mechanism that preserves flow level temporal

topology during training, enabling more realistic modeling of IoT traffic. Additionally, this study investigates the

influence of encoder depth, comparing three and four layer configurations to evaluate their effects on the richness

and stability of temporal representations. Overall, the proposed framework establishes a comprehensive and resilient

foundation for IoT intrusion detection, effectively overcoming the architectural and data centric limitations that

remain unaddressed in prior studies.

3. Proposed Method

The proposed model is a multi-task temporal deep learning architecture designed to accurately detect attacks

in IoT networks while simultaneously identifying their attack types. The system processes flow-based packet

sequences in order to preserve temporal dependencies, which are a critical characteristic of IoT communication

traffic patterns. An overview of this system are shown in Fig. 1.

Overall, the architecture consists of five main components, described as follows:

1. Preprocessing and Flow Construction Stage

This stage transforms raw network packets into structured sequential representations based on network flows,

enabling consistent temporal modeling of packet-level information.

2. Stacked Dual-Path LSTM Encoder for Binary and Multi-Class Prediction

The encoder learns temporal patterns from both normal and malicious traffic by modeling sequential depen

dencies across packet flows.

3. Inter-Path Aggregation Module at Each Encoder Layer

This module facilitates knowledge sharing from the binary anomaly detection task to the multi-class attack

classification task, improving representational consistency across tasks.

153

C. B. Sabdana et al. – Multi-task Temporal Deep Learning Model for Real Time Intrusion Detection System

4. Dual Prediction Head

The model produces two outputs simultaneously: anomaly detection (binary classification) and attack type

identification (multi-class classification).

5. Multi-Task Training Procedure

Model training employs a combination of Focal Loss and gradient-based optimization to effectively address

class imbalance and stabilize multi-task learning.

The multi-task learning strategy hypothetically enables generalization to previously unseen (zero-day) attacks

while increasing training efficiency by jointly learning both tasks within a single integrated model.

3.1. Preprocessing and Flow Construction Stage

After data cleaning and feature selection, the dataset is reorganized based on (flow_id, flow_seq) pairs. Each

flow represents a sequence of packets originating from the same network connection, ordered by increasing time

stamps. The flow construction in this study utilizes heuristics optimized for TCP and UDP traffic, which constitute

the vast majority of the network communications in the benchmark datasets. This approach ensures reliable flow

aggregation for connection-oriented protocols. A detailed discussion regarding the applicability of these heuristics

to other protocol types is provided in section 5.

The flow construction in this study follows protocol-specific heuristics primarily designed for TCP and UDP

traffic, which dominate the benchmark datasets used. While this approach provides reliable flow aggregation for

connection-oriented communication, its direct applicability to non-TCP/UDP traffic (e.g., ICMP or CoAP) is limited

and remains a direction for future enhancement. Each packet within a flow contains three main components:

1. Flow identifiers, consisting of flow_id and flow_seq, which indicate the flow identity and the packet order

within the flow;

2. Selected and encoded numerical features; and

3. Attack class labels, where 0 denotes normal traffic and 1-14 correspond to different attack types.

Before the training data are fed into the model, a shuffling mechanism is applied that preserves the packet

order (topology) within each flow while allowing reordering across different flows. Furthermore, this mechanism

is referred to as topology-constrained shuffling. Mathematically, this mechanism can be formulated as sampling

a global permutation 𝜎 from a restricted permutation space that preserves intra-flow temporal ordering while

permitting arbitrary inter-flow rearrangement.

Let 𝑆𝑖 = (𝑠𝑖,1, 𝑠𝑖,2, 𝑠𝑖,3, …) denote the packet sequence of flow-𝑖 in the dataset, where each packet 𝑠𝑖,𝑗 repre

sents the 𝑗-th packet of flow sequence 𝑆𝑖. The global permutation 𝜎 is constrained to satisfy 𝑠𝑖,𝑗 ≺ 𝑠𝑖,𝑘 ⇒ 𝜎(𝑠𝑖,𝑗) <
𝜎(𝑠𝑖,𝑘), which ensures that the temporal causality of packets belonging to the same flow is strictly preserved. Here,

𝜎(𝑠) denotes the position of packet 𝑠 in the permuted sequence induced by 𝜎.

Formally, the topology-constrained shuffling operation could be defined as:

𝐻 = (𝜎 ∈ 𝑆 | 𝑠𝑖,𝑗 ≺ 𝑠𝑖,𝑘 ⇒ 𝜎(𝑠𝑖,𝑗) < 𝜎(𝑠𝑖,𝑘)) (1)

In equation (1), 𝐻 represents the resulting shuffled sequence (denoted using parentheses) obtained by applying

the constrained permutation 𝜎 to the flattened flow sequence 𝑆.

This strategy enables the model to learn valid temporal patterns within individual flows while mitigating

unintended dependencies on static network topology or fixed inter-flow ordering. The resulting structured sequence

tensors serve as input to the temporal feature extraction stage of the Stacked LSTM Encoder.

3.2. Stacked Dual-Path LSTM Encoder for Binary and Multi-Class Prediction

The temporal feature extraction stage is implemented using multiple layers of a Stacked Dual-Path LSTM

Encoder, as illustrated in Fig. 2. Each traffic flow is processed sequentially to capture both short-term and long-

term temporal dependencies inherent in IoT network traffic. This design explicitly models the sequential nature of

154

JUTI: Jurnal Ilmiah Teknologi Informasi – Volume 24, Number 1, January 2026: 149 – 164

Fig. 2: Stacked Dual-Path LSTM Encoder; Deep Learning Architecture.

packet-level flows, which is essential for accurately characterizing normal communication behavior as well as the

temporal dynamics of network attacks.

At each encoder layer, two parallel LSTM blocks are employed to serve distinct yet complementary learning

objectives. Specifically:

1. Binary Path, which focuses on discriminating between normal and malicious traffic, and

2. Multi-Class Path, which aims to learn fine-grained temporal patterns associated with different attack cate

gories.

Both paths share the same recurrent formulation but operate on task-specific representations. The computa

tions performed within each path are defined by the standard LSTM recurrence and subsequent post-processing

operations. Let 𝑥𝑡 ∈ ℝ𝑑 represents input vectors at position-𝑡 in the sequence with dimension-𝑑, each LSTM layer

could formally defined as:

(ℎ(𝑖)
𝑡 , 𝑐(𝑖)

𝑡) = LSTM(ℎ(𝑖)
𝑡−1, 𝑐

(𝑖)
𝑡−1, 𝑜

(𝑖−1)
𝑡)

𝑜(𝑖)
𝑡 = Dropout(ReLU(LayerNorm(ℎ(𝑖)

𝑡)))
(2)

From equation (2), ℎ(𝑖)
𝑡 and 𝑐(𝑖)

𝑡 each correspond to hidden-state and cell-state output of LSTM block for

position-𝑡 in the sequence and layers-(𝑖) (see Fig. 2). While 𝑜(𝑖)
𝑡 denote LSTM output (hidden-state ℎ(𝑖)

𝑡) followed

by layer normalization, nonlinearity function ReLU, and dropout.

The post-processing stage serves multiple purposes: layer normalization stabilizes hidden-state distributions

and mitigates exploding gradients, the ReLU activation alleviates vanishing gradient issues by promoting sparse

and non-linear representations, and dropout reduces the risk of overfitting by introducing stochastic regularization.

Although applying ReLU after LSTM is less common in conventional sequence models, in this architecture we

155

C. B. Sabdana et al. – Multi-task Temporal Deep Learning Model for Real Time Intrusion Detection System

hypothesize ReLU could helps maintain stable gradient flow and enhances non-linear feature expressiveness across

stacked recurrent layers. This design follows the normalization principles introduced in Layer Normalization [33],

which have been shown to improve training stability and gradient propagation in deep sequential models. The

necessity of this component was empirically validated through ablation studies, which are detailed in Section 4.4.

3.3. Inter-Path Aggregation Module at Each Encoder Layer

Before the input features are fed into the Multi-Class LSTM block, an inter-path aggregation process is applied

using the feature representations produced by the Binary LSTM block. The primary objective of this mechanism

is to facilitate knowledge transfer from the simpler task (binary anomaly detection) to the more complex task of

multi-class attack classification. This asymmetric flow is intended to maintain the distinct functional roles of the

dual-path architecture. By injecting coarse-grained, anomaly-aware information into the multi-class pathway, the

model is guided to learn temporal representations that are more informative and discriminative for distinguishing

among attack types with similar traffic patterns.

The aggregation function in equation (3), (4) and (6), denoted as 𝐴𝑔𝑔(., .), combines the feature representations

𝑜(𝑖−1)
multi and 𝑜(𝑖)

bin which correspond to the output of the (𝑖 − 1)-th layer of the multi-class LSTM path and the output of

the (𝑖)-th layer of the binary LSTM path, respectively. This aggregation function is configurable and varies across

experimental settings. In this study, three aggregation strategies are investigated:

1. Additive Aggregation

𝐴𝑔𝑔(𝑜(𝑖−1)
multi , 𝑜

(𝑖)
bin) = 𝑜(𝑖−1)

multi + 𝑜(𝑖)
bin (3)

Aggregation function defined in equation (3) directly sums the representations from both paths without

applying any feature selection or weighting mechanism.

2. Gated Aggregation

𝐴𝑔𝑔(𝑜(𝑖−1)
multi , 𝑜

(𝑖)
bin) = 𝑜(𝑖−1)

multi (1 − tanh(𝑔)) + 𝑜(𝑖)
bin tanh(𝑔)

𝑔 = 𝑊𝑔(𝑜(𝑖−1)
multi ⊕ 𝑜(𝑖)

bin)
(4)

In aggregation function defined with equation (4), 𝑔 is the gating vector from transforming the concatenated

(⊕) outputs with learnable parameters 𝑊𝑔. The hyperbolic tangent activation is defined on equation (5) with

𝑒 defined as euler constant:

tanh(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥 (5)

The tanh function defined in equation (5) is chosen because LSTM outputs after ReLU lie in [0, +∞),
where sigmoid quickly saturates and limits gating flexibility into [1

2 , 1]. In contrast, tanh provides a smoother

nonlinearity with a wider effective dynamic range, and can be linearly shifted to [0, 1] for gating. This improves

gradient flow and enables more expressive modulation of inter-path feature contributions.

3. Cross-Attention Aggregation

𝐴𝑔𝑔(𝑜(𝑖−1)
multi , 𝑜

(𝑖)
bin) = Attention(𝑜(𝑖−1)

multi , 𝑜
(𝑖)
bin, 𝑜

(𝑖)
bin) (6)

This aggregation function defined in equation (6) use attention mechanism that defined in equation (7), as:

156

JUTI: Jurnal Ilmiah Teknologi Informasi – Volume 24, Number 1, January 2026: 149 – 164

Fig. 3: Diagram of training process. Training is performed iteratively until model convergence, defined as no improvement in validation loss

over a predefined number of iterations.

Attention(𝑄, 𝐾, 𝑉) = softmax(𝑄𝐾𝑇

√𝑑𝑘
)𝑉

𝑄 = 𝑊𝑞𝑜
(𝑖−1)
multi

𝐾 = 𝑊𝑘𝑜(𝑖)
bin

𝑉 = 𝑊𝑣𝑜
(𝑖)
bin

(7)

Equation (7) is a standard scaled dot-product attention introduced by Vaswani et al [34]. In our setting,

attention aggregation used to perform cross-attention between binary and multi-class output with 𝑊𝑞, 𝑊𝑘, and

𝑊𝑣 each a learnable parameter, and softmax is activation function defined as:

softmax(𝑥) = 𝑒𝑥𝑖

∑𝐾
𝑗=1 𝑥𝑗

(8)

In equation (8), 𝑥𝑖 corresponds to each element in input vector 𝑥, and 𝐾 as the dimension of input vector 𝑥.

This formulation allows the multi-class representation to selectively attend to binary-path features based on

contextual relevance, enabling fine-grained feature alignment across tasks.

After all encoder layers are processed, the final temporal representation is used to generate two model outputs.

The Binary Classification Head distinguishes normal traffic from attack traffic, while the Multi-Class Classification

Head identifies specific attack types. Each output is produced through a dedicated dense layer and optimized using

a task-specific loss function. This design allows the model to jointly learn both classification objectives within a

single, efficient end-to-end architecture.

157

C. B. Sabdana et al. – Multi-task Temporal Deep Learning Model for Real Time Intrusion Detection System

3.4. Multi-Task Loss-Based Training Procedure

The model training process follows the workflow illustrated in Fig. 3, which consists of three main stages:

batch sampling, training step, and loss computation, followed by an evaluation of the model’s capability on testing

datasets.

During the batch sampling stage, a subset of flows is randomly selected from the training set. These flows are

then organized into packet sequences using topology-constrained shuffling we explained before. Then, the resulting

batches are processed in the training step, where each packet sequence is forwarded through the Stacked Dual-

Path LSTM Encoder and the Inter-Path Aggregation Module. This process produces two prediction outputs: binary

classification logits for anomaly detection and multi-class classification logits for attack type identification. Both

outputs are subsequently evaluated using their respective loss functions.

The loss computation stage involves calculating and aggregate the Binary Prediction Loss and the Multi-Class

Prediction Loss, both of which employ weighted Focal Loss to address class imbalance. The weighted Focal Loss

is defined as:

ℒ︀ = − ∑
𝑛

𝑖=1
𝛼𝑖𝑦𝑖(1 − 𝑦𝑖)

𝛾 log(𝑦𝑖) (9)

In equation (9), 𝛼𝑖 denotes the loss weight for class 𝑖 which on our experiment setting defined as the inverse

of square root number of samples belonging to that class. While 𝑦𝑖 and 𝑦𝑖 each corresponds to predicted class

probability and actual class label from dataset, respectively.

4. Experiments & Result

Data preprocessing and feature selection were conducted in a Google Colab Pro environment without GPU

acceleration. Deep learning model training was performed in a Kaggle environment using an NVIDIA Tesla P100

GPU. Further details regarding the datasets, experimental configuration, and evaluation results are provided in the

following subsections.

4.1. Dataset

The primary dataset used in this study is Edge-IIoTset [35], [36], which consists of network traffic captures in

PCAP format. The dataset contains 14 attack categories (excluding the normal class) and comprises over 21 million

packets distributed across more than 11 million network flows. Furthermore, this dataset exhibits severe class

imbalance: the dominant class (normal traffic flows) accounts for more than 50% of the samples, while minority

classes such as MITM (Man-in-the-Middle) and Fingerprinting attacks each represent less than 0.01% of the data,

and a there are 8 class that represented by less than 1% of the data. Feature selection was performed based on

domain knowledge, and relevant packet fields were extracted using the Wireshark network analysis tool [37].

Packet-to-flow assignment was conducted by grouping packets according to the tcp.stream and udp.stream

identifiers. For ARP traffic, which lacks transport-layer stream identifiers, packets were grouped based on source

and destination IP addresses. For training and model evaluation, the dataset was split at the flow level, with 20%

of flows reserved for the test set and the remaining flows used for training and validation.

4.2. Models & Training Configuration

The aim of this study is to conduct a comparative analysis of different model configurations. Two hyperpara

meters are considered as experimental variables: (1) the depth of the LSTM layers; and (2) the aggregation function

used to combine the outputs of the binary and multi-class prediction paths (see Fig. 2). We also train a baseline

model that consist of stacked LSTM Block with only multi-class classification objective. A summary of the model

configurations, including the total number of parameters, is presented in Table 2. Our baseline model (with id:

BASE) are configured so that the number of trainable parameters are comparable with every other models. Model

identifiers are also provided to facilitate reference during the results analysis.

158

JUTI: Jurnal Ilmiah Teknologi Informasi – Volume 24, Number 1, January 2026: 149 – 164

Table 2: Experiment models configuration and total number of trainable parameters.

Model ID Aggregation Layers

Depth

Hidden

Dimension

Number of

Trainable Parameters

BASE - 8 256 9 037 840

ADD-3 Addition 3 256 6 226 448

ADD-4 Addition 4 256 8 595 472

GAT-3 Gated 3 256 6 489 104

GAT-4 Gated 4 256 8 989 456

ATT-3 Attention 3 256 6 752 784

ATT-4 Attention 4 256 9 384 976

All models listed in Table 2 were trained using a consistent configuration to ensure a fair comparison. Each

model was optimized with the AdamW optimizer [38] using a default weight decay of 0.01, which provides

sufficient regularization as established in modern deep learning literature. We selected an initial learning rate of

2 × 10−6 for all experiments. The adaptive nature of AdamW makes the training procedure less sensitive to the

initial learning rate choice compared to standard Stochastic Gradient Descent (SGD). Models were trained for 100

epochs with a batch size of 192, and the best-performing iteration was selected based on the lowest validation loss

to ensure optimal convergence.

4.3. Evaluation Metrics

Two evaluation metrics were adopted to compare the experimental results. The first metric is the macro-

averaged F1-score, defined as:

𝐹1 = 2 𝑃𝑟 𝑅𝑐
𝑃𝑟 + 𝑅𝑐

(10)

The second metric is the macro-averaged area under the Precision-Recall curve (AUC-PR), which is formally

defined as:

𝐴𝑈𝐶-𝑃𝑅 = ∫ 𝑃𝑟(𝑅𝑐) d𝑅𝑐 (11)

In equation (10) and (11), 𝑃𝑟 and 𝑅𝑐 each denote a precision and recall, respectively. recision measures the

accuracy of positive predictions and is defined as the ratio of correctly predicted positive samples to all predicted

positive samples. Recall measures the completeness of positive predictions and is defined as the ratio of correctly

predicted positive samples to all actual positive samples. Formally, computation of precision and recall are defined

on equation (12):

𝑃𝑟 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑐 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(12)

Where 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 represent the number of true positives, false positives, and false negatives, respectively.

Macro-averaged F1-score and AUC-PR are selected due to their robustness in evaluating model performance under

class-imbalanced conditions, which is a critical requirement for intrusion detection systems.

4.4. Experimental Results

After the training and validation procedures, the best-performing model from each experiment was evaluated

on the test set. A summary of the evaluation results is presented in Table 3. Compared with the baseline model, all

proposed architectures achieve better performance on the multi-class classification task and significantly outperform

the baseline in binary classification. This performance improvement can be attributed to the fact that the baseline

159

C. B. Sabdana et al. – Multi-task Temporal Deep Learning Model for Real Time Intrusion Detection System

Table 3: Experiment results evaluated on test set. Every evaluation measurement are expressed as percentage point (%). For multi-class

evaluation, the scores are aggregated with macro-aggregation. Binary F1-score results for the baseline method are computed by binarizing the

model outputs. Columns 3 and 7 report the 𝑝-value assessing the statistical significance of the proposed model against the additive aggregation

model with the same number of layers. Column 6 reports the 𝑝-value comparing the proposed model against the baseline.

Binary Prediction Multi-class PredictionModel ID

F1-score ↑ 𝑝-value

vs. ADD

F1-score ↑ AUC-PR ↑ 𝑝-value

vs. BASE

𝑝-value

vs. ADD

BASE 79.41 - 28.65 30.04 - -

ADD-3 97.24 - 31.02 35.59 < 0.0001 -

ADD-4 97.27 - 30.56 32.79 0.0007 -

GAT-3 97.47 0.0741 30.80 33.93 < 0.0001 0.2868

GAT-4 97.32 0.1329 32.81 38.64 < 0.0001 0.0059

ATT-3 97.22 0.7254 34.25 37.08 < 0.0001 0.0008

ATT-4 97.15 0.6932 34.02 40.08 < 0.0001 0.0002

model is trained solely to minimize a multi-class loss, whereas the proposed multi-task architectures employ

separate classification heads optimized specifically for each objective.

Overall, every models achieve comparably high binary F1-scores (above 97%, see Table 3), indicating that

distinguishing normal versus malicious traffic is not a difficult task. In contrast, multi-class performance shows

substantial variation. Attention-based models (ATT-3 and ATT-4) consistently outperform ADD and GAT variants in

both macro F1-score and AUC-PR, achieving consistently higher macro F1-score and AUC-PR under severe class

imbalance compared to ADD and GAT variants. Notably, model with attention aggregation with 3 layers achieves

the highest macro F1-score, while same model with 4 layers yields the best AUC-PR, indicating a trade-off between

balanced per-class accuracy and ranking quality. To rigorously validate this observation, McNemar’s tests were

conducted between paired model variants with identical encoder depth. For the multi-class prediction, the attention-

based models outperform both additive and gated variants (𝑝-value < 0.05, see Table 3), confirming the robustness

of the observed improvements. While for the binary classification, the results indicate no statistically significant

differences across model pairs (𝑝-value > 0.05), suggesting that binary intrusion detection performance is largely

saturated.

To evaluate the impact of the post-LSTM ReLU activation, we compared our best performing models with

attention aggregation and 4 layers depth against similar setup with the ReLU layer removed. Experimental results

showed that removing the activation led to a decrease in multi-class F1 Score from 34.02% to 29.28%, and decrease

in area under PR-curve from 40.08% to 34.69%. This suggests that the ReLU layer is essential to enhances non-

linear feature across stacked recurrent layers before the final aggregation stage.

As shown in Fig. 4, all models exhibit degraded performance under extreme class imbalance. For minority

classes such as MITM and Fingerprinting, none of the models produce positive predictions, which is reflected

by near-diagonal precision-recall curves. In contrast, higher precision-recall performance is observed for majority

classes, including Normal traffic, DDoS TCP SYN Flood, DDoS UDP Flood, and DDoS ICMP Flood attacks.

5. Discussion

This study investigates how architectural choices in multi-task temporal models, specifically inter-path

aggregation mechanisms and encoder depth affect intrusion detection models performance in IoT network traffic.

From last section, we could observe that all evaluated models achieve consistently high performance on coarse-

grained anomaly detection, but their ability to discriminate between attack types varies substantially. The findings

demonstrate that while binary intrusion detection is largely saturated, architectural choices substantially impact

fine-grained attack discrimination under severe class imbalance.

160

JUTI: Jurnal Ilmiah Teknologi Informasi – Volume 24, Number 1, January 2026: 149 – 164

Model

Variants

3

layers

4

layers

ADD

GAT

ATT

Fig. 4: Precision-Recall curves on the test set. The first column corresponds to models with three layers, whereas the second column corresponds

to models with four layers. The top, middle, and bottom rows represent models with addition, gated, and attention aggregation functions,

respectively.

From Table 3, it can be observed that attention-based aggregation consistently outperforms both additive and

gated variants, even when using fewer layers and parameters (e.g., ATT-3 compared with ADD-4 and GAT-4 in

Table 2). This indicates that selective, context-aware information transfer from the binary path is more effective

than uniform or static fusion mechanisms for supporting multi-class attack classification. By dynamically weighting

anomaly-relevant temporal features, the attention mechanism allows the multi-class path to focus on discriminative

161

C. B. Sabdana et al. – Multi-task Temporal Deep Learning Model for Real Time Intrusion Detection System

subsequences that differentiate attacks with similar flow-level behavior. The comparison between three- and

four-layer encoders reveals a depth-related trade-off between per-class balance and ranking quality. Shallower

models tends to achieve higher macro F1-scores (supported by ADD and ATT variants), indicating more uniform

performance across classes, while deeper encoders yield superior AUC-PR (supported by GAT and ATT variants),

reflecting improved confidence calibration and ranking of positive samples. This suggests that deeper temporal

abstraction benefits probability estimation but may amplify bias toward dominant classes, especially when minority

samples are scarce.

Several limitations should be acknowledged. First, the extreme rarity of certain attack classes, such as MITM

and Fingerprinting, prevents meaningful learning regardless of aggregation strategy, indicating that extreme class

rarity imposes fundamental limits on purely loss-based re-weighting, and highlights the importance of comple

mentary strategies such as data selection or rebalancing techniques, which remain outside the scope of this study.

Second, flow construction relies on protocol-specific heuristics, which may limit generalization to alternative traffic

representations. Third, the aggregation mechanism is designed as a unidirectional information transfer from binary

classification to multi-class classification to avoid feature homogenization, where symmetric information exchange

might cause the distinct temporal and structural features of each path to converge and become redundant, we

acknowledge that this prevents the model from capturing potential bidirectional dependencies. Finally, evaluation

is confined to a single dataset, restricting conclusions about cross-domain robustness. Nevertheless, the consistent

gains from attention-based aggregation and topology-constrained shuffling provide strong evidence that structured

temporal modeling and task-aware information sharing are critical for advancing IoT intrusion detection beyond

binary classification.

6. Conclusion

In this study, we propose and evaluate several deep learning architectures for identifying attack behavior in

IoT network traffic. The proposed models employ stacked LSTM layers to jointly address two objectives: binary

classification (normal versus attack) and multi-class classification (attack type identification). We investigate the

effects of varying encoder depth and inter-path aggregation strategies to facilitate knowledge sharing between the

binary and multi-class prediction tasks. The experimental results indicate that context-aware information transfer

from the binary path more effectively supports attack-type classification than static fusion mechanisms. In addition,

to better approximate real-time network traffic conditions during training, a topology-constrained shuffling strategy

is introduced, which improves model generalization to previously unseen temporal sequence patterns.

As stated in the previous section, this work is limited by the use of heuristic flow construction and evaluation

on a single dataset, Edge-IIoTset. Accordingly, future work will incorporate richer structural information, such as

explicit flow-level identifiers or learned flow embeddings, while extending the preprocessing module to handle a

broader range of protocols beyond TCP and UDP. Furthermore, we intend to evaluate cross-dataset generalization

to assess robustness under different traffic distributions, as well as conduct inference-time performance analysis to

better characterize the suitability of the proposed models for real-time intrusion detection systems.

CRediT authorship contribution statement

C. B. Sabdana: Conceptualization, Methodology, Software, Formal analysis, Investigation, Data Curation,

Writing – Review & Editing, Visualization. N. D. Salyasari: Conceptualization, Software, Investigation, Data

Curation, Writing – Original Draft, Writing – Review & Editing, Visualization. I. N. Z. Aliya: Conceptualization,

Software, Resources, Data Curation, Writing – Original Draft, Writing – Review & Editing, Visualization. A. M.

Shiddiqi: Validation, Writing – Review & Editing, Supervision, Project Administration, Funding Acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could

have appeared to influence the work reported in this paper.

162

JUTI: Jurnal Ilmiah Teknologi Informasi – Volume 24, Number 1, January 2026: 149 – 164

Data availability

The dataset was openly provided by IEEE DataPort [36] or could be downloaded from Kaggle here. The

implementation of the proposed model and the experimental scripts used in this study are publicly available at:

https://github.com/MaclaurinSeries/Multi-Task-Temporal-IDS.

Declaration of Generative AI and AI-assisted Technologies in The Writing Process

The authors used generative AI to improve the writing clarity of this paper. They reviewed and edited the AI-

assisted content and take full responsibility for the final publication.

References

[1] F. Hussain, R. Hussain, S. A. Hassan, and E. Hossain, “Machine learning in IoT security: Current solutions and future challenges,” IEEE Communications

Surveys & Tutorials, vol. 22, no. 3, pp. 1686–1721, 2020, doi: 10.1109/COMST.2020.2986444.

[2] M. S. Elksasy, “Understanding the internet of things (IoT) concepts, applications and standards: an overview,” Delta University Scientific Journal, vol.

6, no. 1, pp. 205–210, 2023, doi: 10.21608/dusj.2023.291047.

[3] K. Kaur, A. Kaur, Y. Gulzar, and V. Gandhi, “Unveiling the core of IoT: comprehensive review on data security challenges and mitigation strategies,”

Frontiers in Computer Science, vol. 6, p. 1420680, 2024, doi: 10.3389/fcomp.2024.1420680.

[4] M. Țălu, “Security and privacy in the IIoT: threats, possible security countermeasures, and future challenges,” Computing&AI Connect, vol. 2, no. 1,

pp. 1–10, 2025.

[5] M. Ţălu, “Securing IoT Ecosystems: Experimental Evaluation of Modern Lightweight Cryptographic Algorithms and Their Performance,” Journal of

Cyber Security, vol. 7, no. 1, pp. 565–587, 2025, doi: 10.32604/jcs.2025.073690.

[6] K. Shaukat, S. Luo, V. Varadharajan, I. A. Hameed, and M. Xu, “A survey on machine learning techniques for cyber security in the last decade,” IEEE

access, vol. 8, pp. 222310–222354, 2020, doi: 10.1109/ACCESS.2020.3041951.

[7] O. A. Wahab, “Intrusion detection in the iot under data and concept drifts: Online deep learning approach,” IEEE Internet of Things Journal, vol. 9, no.

20, pp. 19706–19716, 2022, doi: 10.1109/JIOT.2022.3167005.

[8] M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and M. Guizani, “A survey of machine and deep learning methods for internet of things (IoT)

security,” IEEE communications surveys & tutorials, vol. 22, no. 3, pp. 1646–1685, 2020, doi: 10.1109/COMST.2020.2988293.

[9] S. Jamshidi, A. Nikanjam, N. K. Wazed, and F. Khomh, “Leveraging Machine Learning Techniques in Intrusion Detection Systems for Internet of

Things,” arXiv preprint arXiv:2504.07220, 2025.

[10] A. A. Ghani and S. A. Alasadi, “A Comprehensive Review: Intrusion Detection System Using Machine Learning in Internet of Things,” in 2024

International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA), 2024, pp. 290–295.

[11] M. Abdel-Basset, H. Hawash, R. K. Chakrabortty, and M. J. Ryan, “Semi-supervised spatiotemporal deep learning for intrusions detection in IoT

networks,” IEEE Internet of Things Journal, vol. 8, no. 15, pp. 12251–12265, 2021, doi: 10.1109/JIOT.2021.3060878.

[12] K. He, D. D. Kim, and M. R. Asghar, “Adversarial machine learning for network intrusion detection systems: A comprehensive survey,” IEEE

Communications Surveys & Tutorials, vol. 25, no. 1, pp. 538–566, 2023, doi: 10.1109/COMST.2022.3233793.

[13] U. C. Akuthota and L. Bhargava, “The role of machine and deep learning in modern intrusion detection systems: A comprehensive review,” Computers

and Electrical Engineering, vol. 124, p. 110318, 2025, doi: 10.1016/j.compeleceng.2025.110318.

[14] S. Ismail, S. Dandan, and A. Qushou, “Intrusion Detection in IoT and IIoT: Comparing Lightweight Machine Learning Techniques Using TON_IoT,

WUSTL-IIOT-2021, and EdgeIIoTset Datasets,” IEEE Access, 2025, doi: 10.1109/ACCESS.2025.3554083.

[15] S. Baisthakur and B. Fitzgerald, “Multi-task learning long short-term memory model to emulate wind turbine blade dynamics,” Wind Energy Science

Discussions, vol. 2024, pp. 1–35, 2024.

[16] A. Aldhaheri, F. Alwahedi, M. A. Ferrag, and A. Battah, “Deep learning for cyber threat detection in IoT networks: A review,” Internet of Things and

cyber-physical systems, vol. 4, pp. 110–128, 2024, doi: 10.1016/j.iotcps.2023.09.003.

[17] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE transactions on knowledge and data engineering, vol. 34, no. 12, pp. 5586–5609, 2021,

doi: 10.1109/TKDE.2021.3070203.

[18] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach for intrusion detection using recurrent neural networks,” Ieee Access, vol. 5, pp. 21954–

21961, 2017, doi: 10.1109/ACCESS.2017.2762418.

[19] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach to network intrusion detection,” IEEE transactions on emerging topics in

computational intelligence, vol. 2, no. 1, pp. 41–50, 2018, doi: 10.1109/TETCI.2017.2772792.

[20] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, and S. Venkatraman, “Deep learning approach for intelligent intrusion

detection system,” IEEE access, vol. 7, pp. 41525–41550, 2019, doi: 10.1109/ACCESS.2019.2895334.

[21] S. A. Albelwi, “An intrusion detection system for identifying simultaneous attacks using multi-task learning and deep learning,” in 2022 2nd International

Conference on Computing and Information Technology (ICCIT), 2022, pp. 349–353. doi: 10.1109/ICCIT52419.2022.9711630.

[22] B. Sharma, L. Sharma, C. Lal, and S. Roy, “Anomaly based network intrusion detection for IoT attacks using deep learning technique,” Computers and

Electrical Engineering, vol. 107, p. 108626, 2023, doi: 10.1016/j.compeleceng.2023.108626.

[23] M. Abd Elaziz, M. A. Al-qaness, A. Dahou, R. A. Ibrahim, and A. A. Abd El-Latif, “Intrusion detection approach for cloud and IoT environments using

deep learning and Capuchin Search Algorithm,” Advances in Engineering Software, vol. 176, p. 103402, 2023, doi: 10.1016/j.advengsoft.2022.103402.

[24] R. Lazzarini, H. Tianfield, and V. Charissis, “A stacking ensemble of deep learning models for IoT intrusion detection,” Knowledge-Based Systems, vol.

279, p. 110941, 2023, doi: 10.1016/j.knosys.2023.110941.

[25] P. Sanju, “Enhancing intrusion detection in IoT systems: A hybrid metaheuristics-deep learning approach with ensemble of recurrent neural networks,”

Journal of Engineering Research, vol. 11, no. 4, pp. 356–361, 2023, doi: 10.1016/j.jer.2023.100122.

[26] R. A. Elsayed, R. A. Hamada, M. I. Abdalla, and S. A. Elsaid, “Securing IoT and SDN systems using deep-learning based automatic intrusion detection,”

Ain Shams Engineering Journal, vol. 14, no. 10, p. 102211, 2023, doi: 10.1016/j.asej.2023.102211.

163

https://www.kaggle.com/datasets/sibasispradhan/edge-iiotset-dataset
https://github.com/MaclaurinSeries/Multi-Task-Temporal-IDS
https://doi.org/10.1109/COMST.2020.2986444
https://doi.org/10.21608/dusj.2023.291047
https://doi.org/10.3389/fcomp.2024.1420680
https://doi.org/10.32604/jcs.2025.073690
https://doi.org/10.1109/ACCESS.2020.3041951
https://doi.org/10.1109/JIOT.2022.3167005
https://doi.org/10.1109/COMST.2020.2988293
https://doi.org/10.1109/JIOT.2021.3060878
https://doi.org/10.1109/COMST.2022.3233793
https://doi.org/10.1016/j.compeleceng.2025.110318
https://doi.org/10.1109/ACCESS.2025.3554083
https://doi.org/10.1016/j.iotcps.2023.09.003
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.1109/ACCESS.2017.2762418
https://doi.org/10.1109/TETCI.2017.2772792
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1109/ICCIT52419.2022.9711630
https://doi.org/10.1016/j.compeleceng.2023.108626
https://doi.org/10.1016/j.advengsoft.2022.103402
https://doi.org/10.1016/j.knosys.2023.110941
https://doi.org/10.1016/j.jer.2023.100122
https://doi.org/10.1016/j.asej.2023.102211

C. B. Sabdana et al. – Multi-task Temporal Deep Learning Model for Real Time Intrusion Detection System

[27] H. Nandanwar and R. Katarya, “Deep learning enabled intrusion detection system for Industrial IOT environment,” Expert Systems with Applications,

vol. 249, p. 123808, 2024, doi: 10.1016/j.eswa.2024.123808.

[28] Z. Z. Darban, G. I. Webb, S. Pan, C. C. Aggarwal, and M. Salehi, “CARLA: Self-supervised contrastive representation learning for time series anomaly

detection,” Pattern Recognition, vol. 157, p. 110874, 2025, doi: 10.1016/j.patcog.2024.110874.

[29] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the KDD CUP 99 data set,” in IEEE Symposium on Computational

Intelligence for Security and Defense Applications, 2009, pp. 1–6. doi: 10.1109/CISDA.2009.5356528.

[30] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set),” in 2015

Military Communications and Information Systems Conference (MilCIS), 2015, pp. 1–6. doi: 10.1109/MilCIS.2015.7348942.

[31] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, “A survey of network-based intrusion detection data sets,” Computers & Security, vol.

86, pp. 147–167, 2019, doi: 10.1016/j.cose.2019.06.005.

[32] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning for cybersecurity intrusion detection: Approaches, datasets, and compar

ative study,” Future Internet, vol. 12, no. 4, p. 67, 2020, doi: 10.3390/fi12040067.

[33] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,” arXiv preprint arXiv:1607.06450, 2016, doi: 10.48550/arXiv.1607.06450.

[34] A. Vaswani et al., “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017, doi: 10.48550/arXiv.1706.03762.

[35] M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke, “Edge-IIoTset: A new comprehensive realistic cyber security dataset of IoT and IIoT

applications for centralized and federated learning,” IEEe Access, vol. 10, pp. 40281–40306, 2022, doi: 10.1109/ACCESS.2022.3165809.

[36] M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke, “Edge-IIoTset: A New Comprehensive Realistic Cyber Security Dataset of IoT and

IIoT Applications: Centralized and Federated Learning.” [Online]. Available: https://dx.doi.org/10.21227/mbc1-1h68

[37] [Online]. Available: https://wireshark.com/

[38] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint arXiv:1711.05101, 2017, doi: 10.48550/arXiv.1711.05101.

164

https://doi.org/10.1016/j.eswa.2024.123808
https://doi.org/10.1016/j.patcog.2024.110874
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1016/j.cose.2019.06.005
https://doi.org/10.3390/fi12040067
https://doi.org/10.48550/arXiv.1607.06450
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1109/ACCESS.2022.3165809
https://dx.doi.org/10.21227/mbc1-1h68
https://wireshark.com/
https://doi.org/10.48550/arXiv.1711.05101

	Multi-task Temporal Deep Learning Model for Real Time Intrusion Detection System
	1. Introduction
	2. Related Works
	3. Proposed Method
	3.1. Preprocessing and Flow Construction Stage
	3.2. Stacked Dual-Path LSTM Encoder for Binary and Multi-Class Prediction
	3.3. Inter-Path Aggregation Module at Each Encoder Layer
	3.4. Multi-Task Loss-Based Training Procedure

	4. Experiments & Result
	4.1. Dataset
	4.2. Models & Training Configuration
	4.3. Evaluation Metrics
	4.4. Experimental Results

	5. Discussion
	6. Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Declaration of Generative AI and AI-assisted Technologies in The Writing Process

