
JUTI: Jurnal Ilmiah Teknologi Informasi – Volume 23, Number 2, July 2025: 13 – 31

Exploring The Effectiveness of In-Context Methods in Human-Aligned

Large Language Models Across Languages

Ubaidillah Ariq Prathama 1,*), Ayu Purwarianti 2), and Samuel Cahyawijaya 3)

1, 2) School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia

3) Cohere, London, United Kingdom

E-mail: 23524058@std.stei.itb.ac.id1), ayu@staff.stei.itb.ac.id2), and samuelcahyawijaya@cohere.com3)

ABSTRACT

Most of past studies about in-context methods like in-context learning (ICL), cross-lingual ICL (X-ICL), and in-context

alignment (ICA) come from older, unaligned large language models (LLMs). However, modern human-aligned LLMs are

different; they come with chat-style prompt templates, are extensively human-aligned, and cover many more languages. We re-

examined these in-context techniques using two recent, human-aligned multilingual LLMs. Our study covered 20 languages

from seven different language families, representing high, mid, and low-resource levels. We tested how well these methods

generalized using two tasks: topic classification (SIB-200) and machine reading comprehension (Belebele). We found that

utilizing prompt templates significantly improves the performance of both ICL and X-ICL. Furthermore, ICA proves particu

larly effective for mid- and low-resource languages, boosting their F1-score by up to 6.1%. For X-ICL, choosing a source

language that is linguistically similar to the target language, rather than defaulting to English, can lead to substantial gains,

with improvements reaching up to 21.98%. Semantically similar ICL examples continue to be highly relevant for human-

aligned LLMs, providing up to a 31.42% advantage over static examples. However, this gain decreases when using machine

translation model to translate query from target language. These results collectively suggest that while modern human-aligned

LLMs definitely benefit from in-context information, the extent of these gains is highly dependent on careful prompt design,

the language's resource level, language pairing, and the overall complexity of the task.

Keywords: Large Language Models (LLMs), In-Context Learning (ICL), Cross-Lingual ICL (X-ICL), In-Context Alignment

(ICA)

1. Introduction

Large Language Models (LLMs) have recently shown impressive ability to perform well across many different

tasks, topics, and languages [1], [2], [3], [4], [5], [6]. However, they don't perform as well in situations with limited

resources, like low-resource languages or specialized topics. This shows there's a big gap in how well LLMs handle

these low-resource scenarios. To fix this, it's crucial to adapt and align LLMs so they can understand and create text

in a wider range of languages and topics [7], [8], [9], [10], [11], [12], [13]. For instance, studies have shown that

aligning multilingual representations using parallel data can boost multilingual abilities without needing specific

task fine-tuning [14], [15], [16], [17]. However, many of these methods are hard to implement on a large scale

because they require adjusting parameters with vast amounts of data. Another approach focuses on making LLMs

generalize efficiently in test-time in low-resource settings by providing information within the context. This has led

to the development of various in-context methods such as in-context learning (ICL) [18], [19], [20], cross-lingual

ICL (X-ICL) [21], [22], [23], [24], and in-context alignment (ICA) [12], [25] which effectively improve how well

LLMs generalize.

Due to the fast pace at which LLMs are developing, in-context methods haven't yet been thoroughly tested with

the newest, human-aligned LLMs [1], [2], [3], [4], [5], [6]. These newer models are different from older LLMs [18],
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[26], [27] because they undergo more rigorous post-training [28], [29], [30], [31], [32], [33], [34], [35]. This extra

training gives them advanced capabilities beyond just generating language, such as reasoning, acting as agents, and

aligning with human values. This also brings in new in-context features like chat template; system prompt; and

various special tokens [36], [37], [38], [39]. Given these significant differences from previous LLMs, it's unclear

whether the past findings about in-context methods still apply to the latest human-aligned LLMs.

To really understand in-context methods in the latest human-aligned LLMs, we're looking at what makes them

different from older models. First, modern LLMs use a specific chat template that includes sections for the system,

user, and assistant. How these separate parts of the prompt affect in-context methods haven’t been studied before.

So, we're exploring how to adapt in-context methods to work with these new components. Second, the newest LLMs

support many more languages and are better at generalizing to low-resource languages. Our research will specifi

cally examine various resource levels across diverse regions, covering a total of 20 languages. Third, since current

LLMs are great at generalizing across different languages and tasks, we're re-evaluating how effective techniques

for retrieving semantically similar in-context learning (ICL) examples are. In short, our contributions cover:

1. Enhancing Human-Aligned LLMs with In-Context Methods: The study shows that applying in-context

methods to the latest human-aligned LLMs significantly boosts their performance, achieving up to a 55%

improvement over zero-shot, particularly for topic classification tasks.

2. Impact of In-Context Information Placement: The study explored how putting in-context information

in different parts of a prompt affects outcomes. It turns out that the placement has only a small impact

on LLM performance. While it improves In-Context Learning (ICL) and Cross-Lingual ICL (X-ICL), it

actually decreases zero-shot performance compared to traditional prompt.

3. Influence of Language Resource on In-Context Methods: The study also looked into how choosing

specific languages affects in-context methods. In-Context Alignment (ICA) led to an up to 6.1% perfor

mance increase for low- and mid-resource languages. Additionally, picking a source language similar to

the target language significantly improved X-ICL performance by up to 21.98%.

4. Effectiveness of ICL Example Retrieval Techniques: The study compares various techniques for

retrieving ICL examples, semantically similar examples remained highly effective in human-aligned LLMs,

providing up to a 31.42% gain over static examples. However, this effectiveness decreased when a machine

translation model was used to translate query from target language.

2. Literature Review

Historically, LLMs like GPT-3 [18] with its 175 billion parameters were built using extensive unsupervised

pre-training on vast amounts of text. Later, models such as BLOOM [26] and XGLM [27] expanded on this by

incorporating diverse multilingual data to generalize across different languages. In contrast, human-aligned LLMs

represent a significant evolution. These models now integrate sophisticated post-training techniques like instruction-

tuning [15], [28], [30], preference-tuning [9], [32], [35], and reinforcement learning from human feedback (RLHF)

[40], [41], [42]. Many recent open-source LLMs leverage these methods. For example, Meta's Llama 3 [5] uses

instruction-tuning on over 10 million annotated examples, while Google's Gemma 3 [6] employs human preference-

tuning. This human-centric approach also extends to multilingual models. Qwen 2.5 [43] is trained with specific

human preference alignment in various languages, and Aya Expanse [44] breaks new ground by using multilingual

RLHF. This is especially notable because it tackles the challenge of a lack of high-quality non-English preference

data, pushing LLM alignment beyond models primarily focused on English.

Recent work on steering large language models increasingly exploits the three-role chat template to inject

structured reasoning signals. Constitutional AI frames an explicit list of behavioral principles as the system message,

lets the model self-critique under that constitution in hidden assistant turns, then produces a revised assistant reply

to the original user prompt, thereby hard-coding alignment goals into the dialogue flow [36]. ReAct casts the

environment’s observations as incremental user messages and interleaves “Thought” and “Action” strings inside
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the single assistant role, so the agent can reason, act via API calls, and reflect in one continuous chat trace [37].

Planning Tokens fine-tunes models to emit a special planning symbol at the start of every reasoning step, effectively

inserting a self-generated mini-system instruction that guides each subsequent assistant sentence without changing

the external user input [38]. Pause Tokens prepend a learned sequence of <pause> markers between the user prefix

and the first assistant word, giving the network extra forward passes before it speaks and preserving the same

delayed template during pre-training, fine-tuning, and inference [39].

ICL first introduced by [18], allows LLMs to execute tasks using a small number of examples and instructions

directly within the input, foregoing the need for model weight adjustments. In monolingual applications, ICL's

effectiveness has been amplified by methods like chain-of-thought prompting, which encourages step-by-step

reasoning [45] and retrieval techniques that select semantically similar examples [46]. The use of sentence encoder

for semantic textual similarity improves LLMs performance in sentiment analysis, table-to-text generation, and

question-answering compared to random examples selection. The application of ICL to multiple languages, known

as X-ICL, was pioneered by [21], demonstrating that LLMs can achieve strong results in multilingual tasks with

minimal examples. X-ICL mimics ICL performance, but with advantage in low-resource languages as ICL examples

is not always available in low-resource languages. Echoing findings from monolingual ICL, subsequent research

has shown that retrieving semantically similar examples also enhances cross-lingual performance [12].

Recent advancements in ICL have spurred the development of in-context alignment (ICA) strategies. For

instance, X-InSTA [25] markedly improved performance over random prompt choices across 44 cross-lingual pairs

by ensuring semantic consistency in examples and aligning labels between languages. They formulate ICA by

combining the well-known semantic similar X-ICL examples and adding as simple translation of every possible

label for each task between source and target language. This method helps LLMs to reason better across languages

with up to 23% f1-score improvement in MARC, CLS, and HatEval. Building on this, [12] extended the research

to 25 languages with fewer resources, finding that aligning queries could be more effective than aligning labels and

boosting performance for these languages in zero-shot scenarios. They modified ICA using sentences semantically

similar to query from parallel corpora. Instead of using source-target language pair of label task, they use these

sentences in the prompt. This method shows improvement compared to X-InSTA, as previous method may make

the model classify in shifted label space due to the prompt design. However, a significant limitation of this body of

work is that its evaluation has been confined to LLMs not specifically fine-tuned with human feedback. This study

aims to address this gap by evaluating the efficacy of these methods on more recent, human-aligned LLMs.

3. Methodology

3.1. Overview

Previous research has consistently demonstrated that ICL and X-ICL can significantly boost model perfor

mance across various tasks [18], [21]. Building on this, [25] introduced in-context label alignment to further enhance

ICL's effectiveness, a concept later refined by [12] with the addition of in-context query alignment. Our current

work extends the foundational methods proposed in [12].

Our prompt construction relies on four core components: the task instruction 𝐼𝑡𝑎𝑠𝑘, the user’s query in target

language 𝑞𝑡𝑔𝑡, an alignment example 𝐴, and ICL examples 𝐼𝐶𝐿. To create the alignment example, we leverage

a parallel exemplar dataset 𝐷𝑝𝑎𝑟𝑎 = {(𝑠𝑠𝑟𝑐
1 , 𝑠𝑡𝑔𝑡

1 ), ⋯, (𝑠𝑠𝑟𝑐
𝑚 , 𝑠𝑡𝑔𝑡

𝑚 )}, where each pair consists of a source and its

corresponding target sentences. From this dataset, we select the top-k parallel sentence pairs by maximizing the

monolingual similarity between the user’s query 𝑞𝑡𝑔𝑡 and sentence in target language 𝑠𝑡𝑔𝑡
𝑖 . For a given target

language 𝐿𝑡𝑔𝑡, these chosen pairs are then formatted into an alignment prompt structured as, "In 𝐿𝑡𝑔𝑡, 𝑠𝑠𝑟𝑐
1

means 𝑠𝑡𝑔𝑡
1 , ⋯, and 𝑠𝑠𝑟𝑐

𝑘 means 𝑠𝑡𝑔𝑡
𝑘 ". Similarly, we retrieve ICL examples from the specific task dataset 𝐷𝑡𝑎𝑠𝑘 =

{(𝑒1, 𝑦1), ⋯, (𝑒𝑛, 𝑦𝑛)}, where 𝑒𝑖 and 𝑦𝑖 denote the input and label example. We select 𝑒𝑖 semantically similar to

𝑞𝑡𝑔𝑡. For monolingual ICL, we use monolingual similarity, while for X-ICL, we employ multilingual similarity. We

can summarize this into:
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Table 1: Chat-template for in-context methods

Traditional Prompt Chat-Template

𝐼𝑡𝑎𝑠𝑘

𝑒1 → 𝑦1
⋮

𝑒𝑘 → 𝑦𝑘
𝑞𝑡𝑔𝑡 → 𝑦𝑝𝑟𝑒𝑑

User: 𝐼𝑡𝑎𝑠𝑘 ⊕ 𝑒𝑖
Assistant: 𝑦1

⋮
User: 𝐼𝑡𝑎𝑠𝑘 ⊕ 𝑒𝑘

Assistant: 𝑦𝑘
User: 𝐼𝑡𝑎𝑠𝑘 ⊕ 𝑞𝑡𝑔𝑡

Assistant: 𝑦𝑝𝑟𝑒𝑑

𝐴 = 𝑓(𝑞𝑡𝑔𝑡, 𝐷𝑝𝑎𝑟𝑎, 𝑘) (1)

𝐼𝐶𝐿 = 𝑓(𝑞𝑡𝑔𝑡, 𝐷𝑡𝑎𝑠𝑘, 𝑘) (2)

We create both alignment prompts shown in (1) and ICL examples shown in (2) for every query. The quantity

of examples to retrieve is determined by 𝑘, and a semantic textual similarity model is used for this retrieval. The

alignment is formatted as a single string, while the ICL consists of a list containing 𝑘 pairs of inputs and their

corresponding labels.

3.2. Prompt Construction

Recent LLMs are often designed with specific chat templates that delineate roles for the system, user, and

assistant. These templates are crucial for enhancing the LLMs' ability to learn from provided examples and generate

outputs that align more closely with human expectations [47]. Our research investigated the impact of five different

formatting strategies on performance. We tested these against three variations of chat-template prompts and two

variations of traditional prompts serving as baselines. The variables definition refers to Section 3.1.

Traditional (Tr). We used the traditional prompt format directly, as shown in Table 1, without any modifica

tions. The alignment prompt was placed at the very beginning. The model was then expected to predict its response

𝑦𝑝𝑟𝑒𝑑 directly from the designated label space.

Traditional with Chat-Template (TC). This strategy involved modifying the traditional prompt. The align

ment information was still added at the beginning, but the entire prompt was then formatted to fit within the user's

chat-template structure. The model's prediction 𝑦𝑝𝑟𝑒𝑑 was expected to appear as a distinct part of the assistant's

response.

First Turn Chat-Template (FT). We adopted the standard chat-template format from Table 1. The alignment

information was appended directly to the beginning of the first user turn in the conversation sequence. Equation (3)

shows the modification of first user turn.

𝑈𝑠𝑒𝑟: 𝐴 ⊕ 𝐼𝑡𝑎𝑠𝑘 ⊕ 𝑒𝑖 (3)

Last Turn Chat-Template (LT). Similar to FT, this strategy also used the chat-template format from Table 1.

However, the alignment information was appended to the beginning of the last user turn. Equation (4) shows the

modification of last user turn.

𝑈𝑠𝑒𝑟: 𝐴 ⊕ 𝐼𝑡𝑎𝑠𝑘 ⊕ 𝑞𝑡𝑔𝑡 (4)

Separate Turn Chat-Template (ST). For this method, we introduced an additional user and assistant turn at

the very beginning of the chat-template format (from Table 1). In this initial user turn, we provided the alignment

content along with an explicit instruction: "Use this information to answer the task below," guiding the model to

leverage the provided context for its response. Equation (5) shows the modification of first user and asisstant turn.

𝑈𝑠𝑒𝑟: 𝐴 ⊕ 𝐼𝑎𝑙𝑖𝑔𝑛

𝐴𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡: 𝑂𝑘
(5)
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Table 2: Languages detail used in experiment

Lang Code Language Script Lang Family Region Joshi’s Class CC Crawl % Res Level

rus_Cyrl Russian Cyrillic Indo-European Europe 2 4 5.9294 High

zho_Hans Chinese Simplified Han Sino-Tibetan Asia 3 5 5.4135 High

deu_Latn German Latin Indo-European Europe 1 5 5.1154 High

jpn_Jpan Japanese Japanese Japonic Asia 3 5 4.8624 High

spa_Latn Spanish Latin Indo-European Europe 1 5 4.4426 High

fra_Latn French Latin Indo-European Europe 1 5 4.2269 High

ind_Latn Indonesian Latin Austronesian Asia 3 3 1.2009 Medium

kor_Hang Korean Hangul Koreanic Asia 3 4 0.8028 Medium

ukr_Cyrl Ukrainian Cyrillic Indo-European Europe 2 4 0.6240 Medium

hin_Deva Hindi Devanagari Indo-European Asia 2 4 0.2027 Medium

ben_Beng Bengali Bengali Indo-European Asia 2 3 0.1107 Medium

arb_Arab Arabic Arabic Afro-Asiatic Asia 1 5 0.0774 High

mkd_Cyrl Macedonian Cyrillic Indo-European Europe 2 1 0.0387 Low

urd_Arab Urdu Arabic Indo-European Asia 2 3 0.0300 Medium

jav_Latn Javanese Latin Austronesian Asia 3 1 0.0023 Low

snd_Arab Sindhi Arabic Indo-European Asia 2 1 0.0016 Low

sun_Latn Sundanese Latin Austronesian Asia 3 1 0.0012 Low

yor_Latn Yoruba Latin Atlantic-Congo Africa 2 0.0008 Low

ibo_Latn Igbo Latin Atlantic-Congo Africa 1 0.0006 Low

fuv_Latn Nigerian Fulfulde Latin Atlantic-Congo Africa 0 - Low

It's important to note the variations in the number of prompt types across different settings. In a zero-shot setting

without alignment, all chat-template prompts behaved identically since their differences primarily involve ICL and

alignment placement, resulting in only two distinct variations (traditional vs. chat-template types). However, in zero-

shot with alignment, the "Separate Turn Chat-Template" became distinct due to its unique turn structure, leading

to three variations. Finally, in ICL and X-ICL settings without alignment, all chat-template prompts effectively

became the same because their distinguishing feature (alignment placement) was not active, leaving us with three

distinct variations.

3.3. Language Categorization

We've established our language resource levels by considering two key metrics: Joshi's Class and the CC Crawl

percentage (from CC-MAIN-2025-13). Joshi's Class, as outlined in [48], indicates a language's relative priority

or resource availability, with higher values signifying greater priority. The CC Crawl percentage, on the other

hand, quantifies how often and extensive content in a given language has been indexed online. Based on these, we

classify languages as high-resource if they have a Joshi's Class of 5 or 4 and a CC Crawl percentage exceeding

1%. Languages are deemed low-resource if their Joshi's Class is 0 or 1 or their CC Crawl percentage falls below

0.001%. All other languages are categorized as mid-resource. This dual-threshold approach ensures our high-, mid-,

and low-resource classifications accurately reflect languages that are not only theoretically well-studied but also

practically accessible at an internet scale, making our analysis more representative of real-world data availability.

3.4. Experimental Setup

A. Language Selection

For our experiments, we carefully selected a diverse set of 20 languages, which you can find detailed in

Table 2. This language set is remarkably broad, encompassing nine distinct writing systems, including nine Latin-

script languages, three Arabic, three Cyrillic, and one each for Devanagari, Bengali, Hangul, Japanese, and Han.
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Fig. 1: Diagram for in-context learning with in-context alignment (ICL-ICA) methods.

These languages also belong to seven different families: Indo-European is the most represented with ten languages,

followed by Austronesian and Atlantic-Congo (each with three), and one each from Afro-Asiatic, Sino-Tibetan,

Japonic, and Koreanic. Geographically, our selection spans all major global regions except for America and Oceania,

including three from Europe 1, three from Europe 2, one from Asia 1, four from Asia 2, six from Asia 3, and

three from Africa. This wide regional distribution ensures our sample isn't skewed towards any single continent.

In terms of resource quality, our custom metric results in a balanced mix: seven high-resource, six medium-

resource, and seven low-resource languages. This means our dataset effectively combines languages that are both

well-documented and widely available online with those that are either scarcely documented or barely appear in

web-scale crawls.

B. Datasets

Our evaluation focused on two distinct downstream tasks: topic classification using the SIB-200 dataset [49]

and machine reading comprehension with the Belebele dataset [50]. For SIB-200, we evaluated performance on

its test set, while its training and development sets served as sources for In-Context Learning (ICL) examples.

With Belebele, we sampled 200 questions for our evaluation and used the remainder for ICL example retrieval.

Additionally, we leveraged the FLORES-200 parallel corpora [51] to generate our alignment examples, specifically

utilizing the 20 languages detailed earlier.

C. Models

We selected Aya Expanse (8B) [44], which supports 23 languages, and Qwen2.5 Instruct (7B) [43], supporting

29 languages, as our primary Large Language Models (LLMs). These models were chosen for their robust multi

lingual capabilities despite having a relatively small number of parameters. All models were run in 16-bit precision,

and classification decisions were made based on the highest logit probability for each potential label. We use stsb-

xlm-r [52] for retrieving examples for both ICL and ICA. The number of retrieved examples (k) was set to 7 for

ICL on SIB-200, 5 for ICL on Belebele, and 3 for all in-context alignment scenarios. For translation tasks within

the translate-test zero-shot and translate-test ICL settings, we employed nllb-200-distilled-1.3B [51].

The LLMs are loaded using AutoTokenizer and AutoModelForCausalLM from transformers library. All

variables set to default, except using torch_dtype = torch.float16 to load the model in 16-bit precision. We apply

chat-template to the prompt using built-in apply_chat_template function from AutoTokenizer. We use max_length

= 8192 and truncation = True for the tokenizer. Finally, the logits probability will be calculated from the

output of model(**inputs, labels=input_ids). We don’t use model.generate() because we need the raw output for

calculating the probability. We use sentence_transformers library for the semantic textual similarity model. We
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Table 3: Experiment results of Aya Expanse (8B) on Belebele dataset

method avg rus zho deu jpn spa fra arb ind kor ukr hin ben urd mkd jav snd sun yor ibo fuv

TT-ZS 61.875 72.5 61 76.5 66.5 73.5 79 67 73 66.5 70.5 61 60 57.5 61 56 63.5 55 42 47 28.5

TT-ICL 66.975 86 63.5 84.5 61.5 76 81 66 80 74 72.5 71.5 60.5 70 73.5 56 67 56.5 57.5 48 34

ZS 57.85 80 85 73.5 84.5 66 62.5 69.5 65 77.5 75 64 50 49.5 55 46.5 37.5 36 25.5 27 27.5

ZS-ICA 45.225 45.5 80 57.5 72 54 44 45.5 55 58.5 50 41.5 40 31 42 43 31.5 33 28 28 24.5

ICL 64.65 86.5 87 84 81.5 86 84 81 80.5 81.5 82 75.5 49 56 59.5 48.5 40.5 44.5 27 27 31.5

ICL-ICA 66.625 89 86 85 82.5 84 85.5 81.5 79.5 82 82.5 77.5 53 59.5 69 54 46 48 33.5 27 27.5

X-ICL 65.525 91.5 87.5 88.5 81 84 83.5 80.5 80 83.5 81 75 52 64 68 45.5 39 38 33 27 28

X-ICL-ICA 66.275 88.5 84.5 88.5 81.5 82.5 83 81 80.5 81.5 83.5 77.5 53.5 62 69.5 58 38.5 45 33.5 29.5 23.5

Table 4: Experiment results of Qwen2.5 Instruct (7B) on Belebele dataset

method avg rus zho deu jpn spa fra arb ind kor ukr hin ben urd mkd jav snd sun yor ibo fuv

TT-ZS 64.75 75.5 65 80.5 74 77 82.5 68 79.5 62 74.5 67.5 70 67 67.5 57.5 64 58.5 37.5 48.5 18.5

TT-ICL 68.15 80 68.5 87 76.5 78 86 69.5 82.5 73.5 76.5 73 67 71.5 68.5 56.5 66 58 47.5 51 26

ZS 65.375 86 89 84.5 83.5 86 87.5 81.5 82 85 79 65.5 64.5 59.5 73 48 40 42 28 20.5 22.5

ZS-ICA 65.625 88.5 85 86 80 84.5 83 83 74.5 83.5 79.5 70 64.5 64 74 48.5 44 41.5 29 25 24.5

ICL 67.8 88.5 91.5 88 85.5 90 89.5 83 84.5 85.5 81.5 63.5 65 65 75 53.5 41 49.5 25 25 26

ICL-ICA 68.475 91.5 89 87 87 87 87.5 85.5 86 86.5 84.5 69 69 69.5 74.5 52.5 46 47.5 23.5 19.5 27

X-ICL 68.8 90.5 89.5 88.5 84.5 90 88 83.5 85 88 81.5 70.5 65.5 68 76 52 45 49 31 23.5 26.5

X-ICL-ICA 68.825 89.5 87.5 91 84 88 88 81.5 84 88 85 73.5 67 72 77.5 51 45 47.5 30.5 19 27

convert the ICL examples into embedding space using built-in encode function from sentence_transformers with

batch_size=128 and other variables set to default. We search top-k similar sentence by converting the query

into embedding space using the same method, then search for the highest dot product. We use AutoTokenizer

and AutoModelForSeq2SeqLM for the machine translation model. Both of these variables then used as input for

transformers translation pipeline and the max_length is set to 600, as the query is not long.

D. In-Context Methods

Our study compared eight distinct methods for classification using LLMs. We established translate-test zero-

shot (TT-ZS) and translate-test in-context learning (TT-ICL) as baselines for scenarios where MT model is available.

Beyond these, we explored common strategies including zero-shot (ZS), in-context learning (ICL), and cross-lingual

ICL (X-ICL). Furthermore, we investigated the impact of in-context alignment (ICA) by providing semantically

similar sentence translations alongside these primary methods (ZS-ICA, ICL-ICA, X-ICL-ICA).

There are 3 models used in our methods, which is Sentence Transformer (ST) for calculating the semantic

textual similarity, Machine Translation to translate query from target language to source language, and Large

Language Model (LLM) to do classification on downstream task. Fig. 1 shows ICL-ICA methods which is one of

the methods used in our experiment. This method chooses ICL example semantically similar to 𝑞𝑡𝑔𝑡 from 𝐷𝑡𝑎𝑠𝑘 and

ICA sentence semantically similar to 𝑞𝑡𝑔𝑡 from 𝐷𝑝𝑎𝑟𝑎. These examples will be used to generate prompt for LLM

to run inference. In zero-shot settings, we remove the ICL component. In ZS, ICL, X-ICL settings, we remove the

ICA component. In X-ICL settings we change the ICL example from (𝑥𝑡𝑔𝑡, 𝑦𝑡𝑔𝑡) to (𝑥𝑠𝑟𝑐, 𝑦𝑠𝑟𝑐). In TT-ZS and TT-

ICL settings, we add machine translation component to translate 𝑞𝑡𝑔𝑡 before the whole process.

4. Results and Discussion

In this section, we analyze the experimental results for the cross-lingual tasks on the SIB-200 and Belebele

datasets. The initial experiments on Belebele are presented in Tables 3 and 4, while those on SIB-200 appear in

Tables 5 and 6. We ran experiments on 20 selected languages spanning various resource levels and language families,
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Table 5: Experiment results of Aya Expanse (8B) on SIB-200 dataset

method avg rus zho deu jpn spa fra arb ind kor ukr hin ben urd mkd jav snd sun yor ibo fuv

TT-ZS 75.02 75.02 78.9 78.3 74.22 78.6 76.16 77.58 79.78 73.49 75.01 80.72 76.53 79.1 75.62 72.83 76.76 74.28 66.48 73.87 57.12

TT-ICL 87.14 90.3 85.79 89.62 86.58 89.09 90.13 89.82 89.64 88.74 88.73 89.91 88.68 85.38 87.74 86.25 89.15 86.16 81.62 87.55 71.99

ZS 37.66 35.92 41.62 52.04 50.39 45.48 54.23 33.22 33.16 32.33 23.98 42.32 31.05 25.07 36.65 39.71 35.88 41.70 32.99 29.52 36.01

ZS-ICA 8.10 6.04 7.43 10.31 8.73 18.21 10.43 0.61 1.09 3.58 4.56 2.59 15.41 6.12 7.33 6.08 6.90 7.90 12.87 14.94 10.79

ICL 80.11 86 89 90.3 89.4 89.96 90.18 88.12 90.18 88.63 87.78 89.91 79.33 82.11 85.2 78.83 72.30 80.03 43.91 45.54 55.55

ICL-ICA 77.62 82.28 87.49 85.84 87.37 86.28 85.64 83.23 87.15 82.1 85.18 88.81 78.27 79.67 82.11 79.67 72.81 79.09 43.44 43.65 52.36

X-ICL 78.53 85.56 87.35 86.25 86.74 89.8 89.32 86.38 87.67 87.62 89.21 87 78.13 83.12 83.12 75.54 76.25 79.97 39.11 44.92 51.62

X-ICL-

ICA

76.25 83.67 85.98 83.58 86.12 84.1 83.02 83.17 86.19 84.13 87.49 85.02 76.73 79.69 79.69 74.88 68.28 80.12 39.17 44.47 49.44

Table 6: Experiment results of Qwen2.5 Instruct (7B) on SIB-200 dataset

method avg rus zho deu jpn spa fra arb ind kor ukr hin ben urd mkd jav snd sun yor ibo fuv

TT-ZS 73.56 74.41 75.8 76.32 72.43 74.61 75.87 76.74 74.06 73.29 75.22 77.56 73.77 75.25 76.01 74.88 75.39 74.27 64.29 74.55 56.57

TT-ICL 86.96 87.21 88.45 88.11 86.71 89.39 86.5 88.04 89.03 88.94 91.18 89.02 89.41 90.41 85.81 89.66 89.38 88.51 81.22 85.03 67.11

ZS 60.86 76.8 73.09 72.96 68.92 73.17 72.94 70.41 77.92 71.48 71.59 69.66 65.93 58.80 73.05 59.06 44.38 52.03 24.51 17.93 22.55

ZS-ICA 62.43 68.81 71.34 75.07 67.50 70.80 68.03 61.23 63.85 69.11 75.22 72.61 73.28 75.55 70.60 58.34 58.03 59.91 31.20 30.46 27.56

ICL 80.92 90.32 90.16 91.45 89.75 90.22 87.42 89.30 86.87 89.34 90.63 86.96 86.39 84.38 86.94 83.43 77.23 81.59 43.24 44.30 48.50

ICL-ICA 78.56 88.44 87.20 87.79 86.06 85.85 85.31 89.17 86.92 85.61 86.40 81.57 84.34 82.46 83.06 75.85 75.23 79.15 42.14 42.07 52.57

X-ICL 79.04 88.60 90.76 88.37 85.03 89.55 86.06 89.11 86.93 89.76 86.90 83.98 85.79 84.29 88.96 75.14 70.70 78.23 41.04 45.41 46.19

X-ICL-

ICA

77.08 87.74 85.24 86.55 84.20 88.47 82.55 86.23 84.56 86.56 85.18 86.37 80.93 81.56 82.31 72.76 70.50 76.98 40.33 41.52 50.96

using the LT prompt format. The zero-shot and in-context learning methods with a translation model served as

our baselines. In addition, we evaluated six other approaches zero-shot (ZS), in-context learning (ICL), and cross-

lingual in-context learning (X-ICL), each with an added in-context alignment (ICA) step. Bolded figures in each

row denote the best result for that language, and the second-best are underlined.

Overall, it is clear that high-resource languages such as Spanish, French, German, Arabic, Japanese, and

Mandarin consistently achieve superior performance compared to their low-resource counterparts. On average,

these well-represented languages yield f1-scores above 80% with relatively little fluctuation from one dataset to

another. In contrast, truly low-resource languages like Yoruba, Igbo, and Nigerian Fulfulde struggle to exceed

the 40–50% range, especially on the Belebele benchmark, which demands deep text understanding and nuanced

reasoning to answer open-ended questions. This stark disparity highlights that both LLMs remain heavily dependent

on the quantity and quality of available pretraining data. When a language is under-represented in the training

corpus, model comprehension and answer accuracy drop significantly.

From a methodological standpoint, both Aya and Qwen exhibit similar trends. The translate-test zero-shot (TT-

ZS) baseline delivers a stable performance across languages, generally outperforming plain zero-shot (ZS) and even

pure in-context learning (ICL) in some cases. Adding a handful of translated, in-context examples (TT-ICL) further

elevates accuracy, making TT-ICL the top or runner-up method for most languages on both benchmarks. Pure ZS

remains the weakest approach, especially for low-resource languages. ICL and X-ICL can close the gap, but they

too tend to fall short of TT-ICL’s gains underscoring the power of machine translation model.

However, the absence of robust translation models for extremely low-resource languages means that TT-

based methods are not always viable. In these cases, approaches that do not rely on machine translation such as

ICL and X-ICL using related languages become essential. Early results suggest these alternative strategies can

still provide meaningful improvements over zero-shot, although they rarely match the heights of TT-ICL on high-

resource languages. Moving forward, a deeper investigation into translation-free methods, alongside targeted data
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augmentation for low-resource languages, will be critical to closing the performance gap and ensuring more

equitable comprehension capabilities across languages.

Both models exhibit distinct sensitivities to the various prompting and alignment methods. For Aya, zero-shot

approach delivers notably lower performance than any other methods, often trailing by 10–20 points compared to

its own few-shot or translation-based baselines. When you add in-context alignment (ZS-ICA) on top of ZS, Aya’s

accuracy actually drops further, suggesting that alignment worsens its already low zero-shot outputs. Qwen, by

contrast, shows a milder performance gap under ZS, although it still lags behind ICL and TT-ICL results, the drop

is only around 5–10 points. Moreover, Qwen can utilize ICA effectively. ZS-ICA boosts its zero-shot scores by 3–

5 points. This divergence implies that the two models have learned different internal representations of text. Aya’s

representations struggle to benefit from the loose guidance of alignment when no examples are provided, whereas

Qwen’s are sufficiently robust to utilize alignment step even in the absence of demonstrations.

Overall, these findings reaffirm that the translate-test baseline remains the most stable and generally effective

approach for cross-lingual classification across languages of varying resource levels. In both Aya and Qwen, TT-

ICL provide the most consistent uplift, making them the best choice for scenarios where translation models exist.

However, because many low-resource languages lack reliable translation systems, it is crucial to continue exploring

alternative methods such as ICL, X-ICL, and their aligned variants to ensure reasonable performance without

translation. Each of these alternatives can offer efficient solutions with surprisingly strong results, especially when

tuned to the specific strengths of the model and the characteristics of the dataset. In practice, model developers

should weigh the availability of translation, the alignment behavior of their chosen LLMs, and the nature of the task

before selecting a final classification strategy.

4.1. Chat Template Boosts In-Context Methods Performance

Our comprehensive investigation delved into the influence of prompt formatting across eight distinct in-

context methods, two LLMs, and two diverse datasets. To ensure a broad and representative analysis, we carefully

selected five languages German (deu), Indonesian (ind), Hindi (hin), Sundanese (sun), and Nigerian Fulfulde (fuv)

each possessing varying resource levels and originating from different geographical regions, as detailed in Table

7 and 8. We meticulously categorized the prompts utilized in our experiments into three main types: template-

based prompts (including FT, LT, and ST formats), transition prompts (referred to as TC), and traditional prompts

(referred to as Tr). Our observations, graphically represented in Fig. 2, reveal that transition prompts exhibited the

highest degree of instability, proving particularly detrimental to performance when applied to the SIB-200 dataset

with the Aya model. This finding underscore how even subtle alterations in prompt structure can lead to significant

performance degradation, likely because such less conventional formats are largely absent from the vast instruction-

tuning datasets that shape these models, unlike more common prompt structures. In contrast, prompts constructed

using consistent templates generally demonstrated a slight superiority over traditional prompts across both ICL and

TT-ICL scenarios. This suggests that the inherent consistency in template-based formatting aids LLMs in achieving

more effective task execution. However, results for X-ICL were notably more variable, perhaps indicating that

X-ICL specific instruction-tuning is less pervasive, leading to only marginal and inconsistent gains. While the

performance disparities between template-based and traditional prompts were minor in ZS and TT-ZS settings,

template-based prompts did slightly outperform traditional ones specifically on the Belebele dataset. Conversely,

traditional prompts delivered substantially better results on the SIB-200 dataset, demonstrating that prompt efficacy

is significantly influenced by the characteristics of the specific task.

Our analysis of ICA within the framework of template-based prompts revealed largely consistent performance

across all three tested prompts, with a marginally higher score observed for the FT prompt on the SIB-200 dataset.

Interestingly, variations in the placement of the alignment content within the prompt yielded only negligible

improvements in overall performance. However, a more complex picture emerged when examining ZS-ICA. The

Aya model experienced a pronounced decrease in performance when utilizing template-based prompts in a ZS-

ICA setting. Conversely, the Qwen model exhibited a similarly significant reduction in ZS-ICA performance but

specifically when employing traditional prompts. This divergent behavior across models suggests that a higher
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Fig. 2: Performance comparisons of 5 prompt formattings aggregated for 5 sample languages on (1) Belebele with Aya, (2) Belebele with Qwen,

(3) SIB-200 with Aya, (4) SIB-200 with Qwen.

Table 7: Experiment results of Belebele for five languages on two models (Aya Expanse (8B) and Qwen2.5 Instruct (7B)) under different methods

and prompt-type configurations.

Aya Expanse (8B) Qwen2.5 (7B)
Method Prompt

deu ind hin sun fuv deu ind hin sun fuv

FT,LT,ST,TC 76.5 73 61 55 28.5 80.5 79.5 67.5 58.5 18.5TT-ZS

Tr 68.5 63.5 59 55.5 26 80.5 79 68 56.5 22

FT,LT,ST 84.5 80 71.5 56.5 34 87 82.5 73 58 26

TC 85 82 73 59.5 30 86.5 81.5 71 56 22

TT-ICL

Tr 86 79 72 59.5 29.5 88.5 82.5 71 57.5 27

FT,LT,ST,TC 73.5 65 64 36 27.5 84.5 82 65.5 42 22.5ZS

Tr 73 67 62 31.5 22 85.5 83 64 36.5 22.5

FT,LT,TC 57.5 55 41.5 33 24.5 86 74.5 70 41.5 24.5

ST 83 53.5 62 36 29.5 87.5 77.5 68.5 42 26.5

ZS-ICA

Tr 87 72 66.5 36.5 28.5 61.5 49.5 51.5 30.5 24

FT,LT,ST 84 80.5 75.5 44.5 31.5 88 84.5 63.5 49.5 26

TC 81.5 76 74.5 41.5 26 86 81.5 64.5 40.5 25

ICL

Tr 83 79 76 43 25 87 81.5 63.5 44 27.5

FT 85 84 75.5 45 26.5 87.5 87 67 48.5 28

LT 87 79.5 77.5 48 27.5 87 86 69 47.5 27

ST 86 82.5 75.5 45.5 27 88.5 87 66 47.5 28.5

TC 80.5 73 75.5 41 24.5 88 83.5 65 44 29.5

ICL-ICA

Tr 86.5 82 74 44.5 26 89 85 66.5 47 28.5

FT,LT,ST 88.5 80 75 38 28 88.5 85 70.5 49 26

TC 92.5 83.5 74 35.5 27.5 90.5 83.5 73 43.5 33

X-ICL

Tr 90 84 77.5 40.5 28.5 90.5 84 70 44 30

FT 88.5 80 76 41.5 29.5 90 87 70.5 47.5 27.5

LT 91 80.5 77.5 45 23.5 91 84 73.5 47.5 27

ST 88 80 74.5 42 33 90.5 87 70 46.5 29.5

TC 91.5 82 78 41 27.5 91 82 72 44.5 36.5

X-ICL-ICA

Tr 87 82.5 76.5 43 29 92.5 85.5 72.5 46.5 28

proportion of alignment content relative to the core instruction and query might, in certain contexts, confuse the

model, leading to suboptimal results. Nonetheless, it's crucial to acknowledge that these outcomes are highly
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Table 8: Experiment results of SIB-200 for five languages on two models (Aya Expanse (8B) and Qwen2.5 Instruct (7B)) under different methods

and prompt-type configurations.

Aya Expanse (8B) Qwen2.5 (7B)
Method Prompt

deu ind hin sun fuv deu ind hin sun fuv

FT,LT,ST,TC 78.3 79.78 80.72 74.28 57.12 76.32 74.06 77.56 74.27 56.57TT-ZS

Tr 79.72 78.48 80.07 74.42 58.97 75.76 74.65 77 71.73 54.13

FT,LT,ST 89.62 89.64 89.91 86.16 71.99 88.11 89.03 89.02 88.51 67.11

TC 70.87 71.72 67.24 66.99 54.69 87.10 83.36 81.96 84.27 67.04

TT-ICL

Tr 82.16 85.03 84.53 82.06 66.46 89.38 86.54 86.76 84.67 67.01

FT,LT,ST,TC 52.04 33.16 42.32 41.70 36.01 72.96 77.92 69.66 52.03 22.55ZS

Tr 74.01 78.54 78.44 72.72 45.12 71.42 74.71 73.23 64.15 35.48

FT,LT,TC 10.31 1.09 2.59 7.90 10.79 75.07 63.85 72.61 59.91 27.56

ST 32.60 24.37 31.71 29.25 19.45 75.45 75.34 75.26 70.11 38.47

ZS-ICA

Tr 78.04 79.83 74.91 76.41 46.27 81.72 81.67 78.63 79.74 42.09

FT,LT,ST 90.30 90.18 89.91 80.03 55.55 91.45 86.87 86.96 81.59 48.50

TC 24.51 16.51 22.52 6.41 21.78 85.52 85.86 82.22 78.62 42.78

ICL

Tr 85.86 87.69 88.11 75.08 51.92 86.97 83.76 88.28 81.63 52.71

FT 87.45 90.44 90.89 78.63 55.80 91.17 87.08 88.19 84.36 54.94

LT 85.84 87.15 88.81 79.09 52.36 87.79 86.92 81.57 79.15 52.57

ST 87.07 91.78 91.46 77.86 52.43 90.50 85.41 87.28 81.88 52.91

TC 39.34 23.67 19.49 23.67 21.07 82.69 80.65 81.32 71.47 41.06

ICL-ICA

Tr 83.53 85.42 85.06 74.94 48.27 87.28 84.69 87.91 82.83 55.12

FT,LT,ST 86.25 87.67 87.00 79.97 51.62 88.37 86.93 83.98 78.23 46.19

TC 56.65 55.95 50.58 54.99 40.86 89.01 86.33 86.39 72.58 37.89

X-ICL

Tr 80.44 82.80 81.51 65.90 41.64 85.69 84.35 84.21 80.14 49.06

FT 86.16 89.90 85.73 78.31 55.17 90.54 89.13 85.76 84.41 51.36

LT 83.58 86.19 85.02 80.12 49.44 86.55 84.56 86.37 76.98 50.96

ST 84.37 89.32 83.53 77.20 51.99 89.39 86.80 85.55 82.71 50.45

TC 36.69 38.74 30.66 30.81 25.56 83.93 81.99 84.11 77.53 44.61

X-ICL-ICA

Tr 77.58 82.96 82.38 71.69 50.68 85.79 88.85 84.34 83.33 54.54

context-dependent and vary on a case-by-case basis. For example, Qwen's performance on the SIB-200 dataset with

ZS-ICA was notably robust and stable. Furthermore, results observed in the ICL-ICA and X-ICL-ICA settings were

broadly analogous across different prompt types, with the only notable exception being a modest improvement for

template-based prompts when used with the Aya model on the SIB-200 dataset.

Template-based prompts shine when you can supply a handful of in-context examples, especially under the

TT-ICL or pure ICL setups. In these scenarios, template-based prompts consistently push high-resource Languages

into the high-80s and low-90s. For example, on Belebele under ICL, Aya scores 84% on German and 31.5% on

Nigerian Fulfulde, while Qwen hits 88% on German and 26% on Nigerian Fulfulde. However, under this setting

template-based prompts failed to achieve best performance on Hindi, although having only marginal differences. On

SIB-200 using Aya, ICL and TT-ICL are more superior compared to other prompts. This behavior is also shown in

Qwen, but with more variability in mid-resource and low-resource languages. These prompts also show remarkable

consistency across languages, rarely dipping more than 5 points between FT, LT, and ST variants. In zero-shot

settings on SIB-200 they lag behind the Tr prompt by a huge margin. So, if you can’t supply in-context examples,

template-based prompts aren’t ideal.
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Fig. 3: Performance gain compared to zero-shot as baseline aggregated for every resource levels on (1) Belebele with Aya, (2) Belebele with

Qwen, (3) SIB-200 with Aya, (4) SIB-200 with Qwen.

In general, the transition prompt is worse compared to the other two prompts because its instability. However,

there are some cases where this prompt has the best performance, mostly on the Belebele benchmark. The transition

prompt achieves best performance on German under X-ICL and X-ICL-ICA settings using Aya. It shows the

capability of this prompt to handle relatively higher-resource language. It also shows in TT-ICL settings where this

prompt achieves best performance on Indonesian, Hindi, and Sundanese, while also having good performance on

German and Nigerian Fulfulde. On SIB-200 benchmark using Qwen, this prompt also has good performance in X-

ICL and X-ICL-ICA with results more varying. Despite some good performances, this prompt performs poorly on

other settings and SIB-200 dataset. So, we don’t recommend using this prompt.

When there are no in-context examples available or zero-shot efficiency is needed, the traditional prompt is

recommended. On SIB-200 benchmark using Aya, traditional prompt outperforms template-based prompts with

huge margin on every language. On SIB-200 benchmark using Qwen, traditional prompt outperforms template-

based prompts with lower margin in ZS-ICA setting. It also outperforms template-based prompts on lower-resource

languages (Hindi, Sundanese, Nigerian Fulfulde) in ZS setting. This shows that topic classification with ZS and

ZS-ICA settings don’t need the formatting consistency given by template-based prompts. On the other hand, the

results on Belebele benchmark don’t show a clear correlation between these two prompts in ZS and ZS-ICA settings.

Performance on higher-resource languages (German and Indonesian) mostly achieve better results using traditional

prompt, but it doesn’t generalize to all settings. Furthermore, the gain of traditional prompt in TT-ZS also remains

unclear as the results vary with different models and languages.

4.2. Language Resource Level Impacts In-Context Information Effectiveness

Our evaluation involved two datasets and two distinct models, utilizing the LT prompt format consistently

across all eight of our in-context methods. We observed that the translate-test method consistently proved to be one

of the most stable approaches, as detailed in Tables 3, 4, 5, and 6. Remarkably, even the translate-test zero-shot

method surpassed both ICL and X-ICL in performance for low-resource languages. However, this method's heavy

reliance on machine translation models presents a significant limitation, as these models aren't always available for

such languages. Consequently, our primary focus shifted toward methods that operate independently of machine

translation models, as illustrated in Fig. 3.

We found that performance improvements on the Belebele dataset were less substantial compared to the

SIB-200 dataset. This indicates that retrieving semantically similar examples remains effective for classification

tasks when using human-aligned LLMs. Conversely, machine reading comprehension, like that in the Belebele

dataset, is a more intricate task, demanding context-dependent reasoning for accurate answers. This suggests that

while human-aligned LLMs can still reason from examples, their overall impact on such complex tasks is somewhat

constrained. Further supporting this, ICL consistently performed best for SIB-200 across different models and

resource levels, whereas Belebele often yielded better results in X-ICL settings, possibly because LLMs process

information more effectively in English. This is also evident from the Belebele results using the Aya model,
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Fig. 4: Performance comparison between different language resource level on SIB-200 and Belebele Dataset Using ZS, ICL, and X-ICL

which show that LLMs perform better with high-resource languages. Conversely, the performance improvement on

SIB-200 for high-resource languages was comparatively smaller, likely because LLMs already demonstrate strong

zero-shot capabilities in these languages.

As illustrated in Fig. 3, it is clear that the effectiveness of ICA is not uniform but is instead highly dependent

on the specific language model being used. For instance, employing ICA with the Aya model leads to a significant

degradation in zero-shot performance. In contrast, the Qwen model demonstrates a beneficial impact from ICA in

the same zero-shot setting, an advantage that is particularly pronounced for low-resource languages. This divergence

strongly suggests that different LLMs develop their own distinct internal multilingual representations. Focusing

specifically on the Belebele dataset, the benefits of ICA become even more nuanced. It enhances the Aya model's

performance on ICL and X-ICL tasks for low-resource languages, while it boosts the Qwen model's performance for

mid-resource languages. These findings converge on the conclusion that ICA is most advantageous when applied to

languages with low to medium resource availability. For languages with extensive resources, the additional context

provided by alignment may become superfluous or even counterproductive, potentially confusing the model with

information it already comprehends well.

Fig. 4 illustrates a distinct and positive correlation between the volume of available data for a language and the

performance of the LLMs. As the level of resources increases from low to high, there is a corresponding rise in both

accuracy and f1-scores. It is particularly noteworthy that mid-resource languages frequently achieve performance

levels on par with their high-resource counterparts, especially within the SIB-200 benchmark. This trend indicates

that once a certain threshold of data availability is crossed, the performance benefits from additional resources

begin to diminish. By closely examining the performance breakpoints in Table 3 through 6, we can pinpoint where

this drop-off occurs. For the Belebele dataset (Table 3–4), performance declines sharply for languages with fewer

resources than Ukrainian, whereas for the SIB-200 benchmark (Table 5–6), this significant drop only manifests

for languages with fewer resources than Macedonian. This pattern strongly suggests that the latest generation of

human-aligned LLMs has developed a sufficient level of robustness to process mid-resource languages with great

accuracy, nearly eliminating the performance gap that once separated them from high-resource languages.

From these drop-off points we can infer a practical resource threshold for current LLMs which is language

with roughly a Joshi’s Class value of 4 (which corresponds to a certain typological and corpus-size bracket) and

at least 0.5 % coverage in the Common Crawl dataset. Languages meeting or exceeding these thresholds tend to

yield stable, high performance, even in zero-shot runs, whereas those below them see a rapid degradation. In other

words, once a language has a certain resource level for development and a minimal corpus footprint online, modern

human-aligned LLMs can understand and reason over it nearly as well as high-resource languages.

Turning to the truly low-resource end, there is a striking performance gap between Asian regional languages

like Javanese (jav), Sundanese (sun), and Sindhi (snd) compared to African languages such as Yoruba (yor), Igbo

(ibo), and Nigerian Fulfulde (fuv). Although their Common Crawl percentages are similar, the latter group under

performs by 10–20 points, highlighting an under-representation of African language varieties in pre-training data,
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Fig. 5: Percentage gain of different source languages compared to English. Javanese and Sundanese using Indonesian as source language (Left).

Ukrainian and Macedonian using Russian as source language (Center). Urdu and Sindhi using Hindi as source language (Right).

potentially compounded by dialectal diversity and fewer high-quality texts. This is shown by the steep gradient in the

leftmost part in Fig. 4. This disparity underscores the need for more curated corpora and targeted data augmentation

for these under-served languages. Method choices between ZS, ICL, and X-ICL have the same trend of performance

with respect to language resource level. The only different is there is a larger gap between ZS on SIB-200 benchmark

compared to Belebele.

4.3. Similar Source-Target Language Enhances In-Context Transferability

In an evaluation conducted across two distinct datasets and two LLMs, we investigated the effect of source

language choice in X-ICL and ICA by comparing English against source languages that are more similar to the target

language in terms of linguistic family and geographical region. For this experiment, we consistently employed the

LT prompt format for all in-context methods. The results, as depicted in Fig. 5, generally demonstrate that using

a more linguistically similar source language enhances X-ICL performance when compared to using English. The

most significant improvement was observed when the source language for Javanese was switched to Indonesian, a

change that yielded performance gains across all tested models and datasets. We noted only three instances of a slight

performance decrease, specifically for Sundanese and Urdu. This pattern strongly suggests that Large LLMs tend

to form more closely related internal representations for languages that are linguistically related. Furthermore, we

sought to determine the relative importance of linguistic similarity versus script similarity. To do this, we altered the

source language for Sindhi and Urdu from Hindi to Arabic, as detailed in Tables 9 and 10. The findings revealed that

both factors contribute similarly, with a marginally greater improvement attributable to direct linguistic similarity

over shared writing systems.

A comprehensive analysis of Table 9 and 10 confirms that selecting a source language with close linguistic

ties to the target language consistently enhances the performance of ICA. However, the more variable outcomes

observed on the Belebele dataset highlight how the inherent difficulty of a given task significantly influences the

extent of these performance gains. Specifically, tasks with lower complexity tend to receive more substantial boosts

in performance, whereas more complex ones benefit to a lesser degree. From a practical standpoint, this indicates

that while ICA can effectively harness linguistic similarities to improve answer accuracy, the overall impact of

this alignment is ultimately smaller than the performance gains achievable through a well-chosen source language

in a X-ICL setup. Consequently, the strategic and careful selection of an optimal source language, preferably one

that is better-resourced than the target language becomes a crucial consideration. This approach enables the model

to maximize performance improvements without needing to increase the number of in-context examples, thereby

striking an effective balance between data efficiency and overall model effectiveness.

4.4. Importance of Semantically Similar ICL Examples

We compare the effect of ICL examples retrieval techniques on TT-ICL, ICL, and X-ICL evaluated on SIB-200

using both models. We use chat-template as our prompt formatting. We sample 6 languages (hin, ben, urd, snd, yor,

ibo) consisting of 3 mid-resource languages and 3 low-resource languages. We choose these languages because we

hypothesize that semantically similar examples have more impact on mid- and low-resource language as LLMs
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Table 9: Experiment results of Belebele for six languages on two models (Aya Expanse (8B) and Qwen2.5 Instruct (7B)) under different source

languages.

Aya Expanse (8B) Qwen2.5 (7B)

Target Source ZS ZS-ICA ICL ICL-ICA X-ICL X-ICL-

ICA

ZS ZS-ICA ICL ICL-ICA X-ICL X-ICL-

ICA

eng 43 54 45.5 58 48.5 52.5 52 51jav 46.5 48.5 48 53.5

ind 46 56 55.5 58.5 46.5 52.5 56 57

eng 33 48 48 45 41.5 47.5 49 47.5sun 36 44.5 42 49.5

ind 32.5 47.5 47 50 42.5 46.5 51.5 48

eng 50 82.5 81 83.5 79.5 84.5 81.5 85ukr 75 82 79 81.5

rus 53 82.5 85 82.5 80.5 82.5 85.5 87

eng 42 69 68 69.5 74 74.5 76 77.5mkd 55 59.5 73 75

rus 39.5 67.5 69.5 72.5 70.5 73.5 77.5 73

eng 31 59.5 64 62 64 69.5 68 72

hin 33.5 60 67 65.5 62 65 67.5 66.5

urd 49.5 56 59.5 65

arb 33.5 58 63.5 60.5 62 65 66.5 69.5

eng 31.5 46 39 38.5 44 46 45 45

hin 31 41.5 41 46 43.5 45 45 42.5

snd 37.5 40.5 40 41

arb 31.5 38.5 36.5 43 44 45 38.5 42.5

have less understanding in these settings. We only experiment with SIB-200 dataset as the gains from ICL examples

are bigger compared to Belebele. We use 4 different ICL examples retrieval techniques which are static, random,

top-class, and top-k. For static technique, we choose 7 examples from each class and use it as our examples for all

test data. For random technique, we choose 7 random examples from each class everytime we run inference on test

data. For top-class techniques, we use semantic textual similarity and choose the most similar example for each

class. For top-k techniques, we use semantic textual similarity and choose 7 most similar examples, not necessarily

from different classes. We always use top-k techniques for our previous experiments because it has been proven

that semantically similar examples boost ICL performance [46]. However, we further ablate this technique under

different language resource levels and models.

As shown in Fig. 6, the gain between changing ICL examples retrieval techniques remain consistent across

different resource levels. Performance in low-resource languages remain significantly lower, but the retrieval

techniques performance remain the same with top-k > top-class > random > static. The difference between each ICL

retrieval techniques are around 1-3% in f1-score. Semantically similar ICL examples remain important in human-

aligned LLMs. However, the use of top-k and top-class techniques need resources such as ICL examples dataset,

semantic textual similarity model, and increased computation time due to semantic retrieval. When efficiency is

more important than performance, random examples can be an alternative if ICL example dataset is available.

However, in extreme low-resource settings where ICL examples dataset is unavailable, static examples can be an

alternative with less than 10% drop in performance. Furthermore, if machine translation model is available, the

effectiveness of ICL examples retrieval decrease. In this case, the use of random examples can be considered for

the sake of efficiency.

As shown in Table 11, ICL example retrieval technique using top-k is still the best option in the ICL and X-

ICL settings. However, the gains decreased in TT-ICL setting as the results varied more between top-k and top-class

techniques with only little margins. This shows that ICL examples matters less when the query is already translated

into English highlighting the robustness of TT-ICL technique. The performance gap between mid- and low-resource

languages is also smaller in TT-ICL setting as Yoruba and Igbo achieve performance over 80% when using TT-ICL.

The use of top-class ICL examples retrieval techniques may confuse models as they are given similar sentences

which have different labels. It shows on the results for ICL and X-ICL as top-class has lower performance compared
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Table 10: Experiment results of SIB-200 for six languages on two models (Aya Expanse (8B) and Qwen2.5 Instruct (7B)) under different source

languages.

Aya Expanse (8B) Qwen2.5 (7B)

Target Source ZS ZS-ICA ICL ICL-

ICA

X-ICL X-ICL-

ICA

ZS ZS-ICA ICL ICL-

ICA

X-ICL X-ICL-

ICA

eng 6.08 79.67 75.54 74.88 58.34 75.85 75.14 72.76jav 39.71 78.83 59.06 83.43

ind 5.88 81.37 83.33 79.90 60.29 75.49 81.86 75.49

eng 7.90 79.09 79.97 80.12 59.91 79.15 78.23 76.98sun 41.70 80.03 52.03 81.59

ind 5.39 81.86 81.86 81.37 56.37 84.31 85.29 81.37

eng 4.56 85.18 89.21 87.49 75.22 86.40 86.90 85.18ukr 23.98 87.78 71.59 90.63

rus 5.39 89.22 89.22 87.75 79.41 87.75 91.18 88.24

eng 7.33 82.11 83.12 79.69 70.60 83.06 88.96 82.31mkd 36.65 85.2 73.05 86.94

rus 3.92 85.29 86.27 84.80 76.47 87.25 89.71 87.25

eng 6.12 79.67 83.12 79.69 75.55 82.46 84.29 81.56

hin 2.94 83.33 80.88 79.41 75.49 82.84 84.31 82.35

urd 25.07 82.11 58.80 84.38

arb 3.43 82.35 81.37 77.94 75.00 82.84 85.78 84.31

eng 6.90 72.81 72.21 68.28 58.03 75.23 70.70 70.50

hin 3.43 75 72.55 72.55 51.96 76.47 76.96 77.45

snd 35.88 72.30 44.38 77.23

arb 3.43 74.02 73.53 71.57 58.82 75.00 73.53 75.49

Fig. 6: Comparison of ICL examples retrieval techniques between mid- and low-resource languages

to top-k, although they both use the same semantic textual similarity model. However, this result is not seen in TT-

ICL setting showing that models reason better when provided with English query. In general, static examples have

the worst performance, while random examples are the second worst. These results show that semantically similar

ICL examples are still relevant, especially in ICL and X-ICL settings.

5. Conclusion

Modern human-aligned multilingual LLMs continue to benefit from in-context information, though under

specific conditions: modern prompt templates consistently outperform traditional formats in In-Context Learning

(ICL) and Cross-Lingual In-Context Learning (X-ICL), while "transition" prompts can significantly reduce

performance, highlighting LLMs' sensitivity to prompt structure, with traditional formats often faring better in zero-

shot settings. In-Context Alignment (ICA) remains valuable, primarily for mid- to low-resource languages, but

its effectiveness strongly depends on both the model and the prompting strategy. For instance, ICA is reducing

zero-shot performance in Aya while improving it in Qwen2.5. Swapping English for a linguistically closer source

language in X-ICL can improve performance and serves as an alternative when data in more similar languages

is available. Furthermore, the task type significantly impacts ICL performance; while ICL generally works well

for classification tasks, it offers limited benefits for reasoning-intensive benchmarks like Belebele, particularly for

low-resource languages. Semantically similar ICL examples remain relevant in topic classification, especially in

28



JUTI: Jurnal Ilmiah Teknologi Informasi – Volume 23, Number 2, July 2025: 13 – 31

Table 11: Experiment results of SIB-200 for six languages on two models (Aya Expanse (8B) and Qwen2.5 Instruct (7B)) under different ICL

retrieval techniques.

Aya Expanse (8B) Qwen2.5 (7B)
Method ICL Retrieval

hin ben urd snd yor ibo hin ben urd snd yor ibo

static 86.23 86.11 82.79 84.13 78.92 84.89 86.23 85.74 86.51 84.97 77.76 81.34

random 88.15 88.94 85.02 87.63 80.76 86.55 88.32 88.07 88.53 87.49 80.22 84.51

top-class 89.52 88.13 87.44 88.23 81.80 87.90 89.57 88.23 89.75 87.34 82.59 84.87

TT-ICL

top-k 89.91 88.68 85.38 89.15 81.62 87.55 89.02 89.41 90.41 89.38 81.22 85.03

static 83.15 70.12 72.82 64.39 37.17 38.55 80.21 80.29 75.41 67.32 38.75 39.96

random 86.80 70.93 75.01 65.03 41.21 41.35 83.67 80.76 79.28 69.58 40.83 38.60

top-class 87.58 77.69 76.24 71.58 41.46 42.08 84.78 85.55 80.30 70.32 40.57 41.16

ICL

top-k 89.91 79.33 82.11 72.30 43.91 45.54 86.96 86.39 84.38 77.23 43.24 44.3

static 79.8 64.33 69.42 60.09 33.9 34.18 78.55 79.73 71.53 60.49 34.55 38.61

random 84.32 67.31 72.11 62.81 38.94 39.44 81.64 78.36 76.66 64.05 37.91 37.5

top-class 86.34 73.52 75.35 72.57 40.98 40.14 81.11 84.81 77.56 63.32 37.4 42.38

X-ICL

top-k 87 78.13 83.12 72.21 39.11 44.92 83.98 85.79 84.29 70.7 41.04 45.41

ICL and X-ICL settings, but their effectiveness drops in TT-ICL when machine translation is used. Finally, when

efficiency is crucial, consider using simpler ICL example retrieval, especially for complex tasks requiring reasoning

or for mid-resource languages where a machine translation model is available.
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