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ABSTRACT

The exponential growth of online gambling in Indonesia poses significant socio-economic challenges, particularly

affecting vulnerable populations through sophisticated digital marketing strategies targeting social media platforms. This study

addresses the critical need for automated detection systems to identify gambling-related content in YouTube comments. We

scraped and manually labeled 11,673 comments from diverse YouTube videos, creating an extremely imbalanced dataset

with gambling comments representing only 10% of the total data. Multiple machine learning approaches were developed and

evaluated, comparing traditional gradient boosting methods (LightGBM, XGBoost, CatBoost) using TF-IDF features against

deep learning models (LSTM and GRU) with Word2Vec embeddings. The experimental results demonstrate that gradient-

boosting methods significantly outperform deep learning approaches in generalization capability. LightGBM achieved the

highest holdout F1-score (0.8737) with balanced precision (0.8912) and recall (0.8886), while XGBoost followed closely

with comparable performance. In contrast, deep learning models exhibited severe overfitting. While the GRU model showed

excellent test performance (precision: 0.9849, recall: 0.9378), its holdout recall drastically reduced to 0.5022, resulting in a

low holdout F1-score (0.6647). Similarly, LSTM performed well on the test set (precision: 0.9610, recall: 0.9426) but failed

to maintain consistency on holdout data (holdout recall: 0.5733, F1-score: 0.7207). The findings indicate that the dataset size

was insufficient for deep learning approaches to learn generalizable representations effectively. For practical deployment in

YouTube gambling content detection, gradient boosting methods are recommended due to their superior performance with

limited, imbalanced datasets.
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1. Introduction

The digital age has brought a major shift in how people interact and access information, with social media

platforms becoming an integral part of everyday life. This widespread use has also made these platforms vulnerable

to misuse. One of the most concerning forms of exploitation is their use in promoting online gambling. Such activ

ities pose serious ethical and legal challenges in the digital landscape. Online gambling promotion, disseminated

extensively through social media, has emerged as a pivotal strategy for gambling operators to expand their reach to

potential players, facilitated by the round-the-clock accessibility of online gambling sites. In Indonesia, this trend

has precipitated a dramatic surge in the exploitation of social media channels for online gambling advertisements,

presenting substantial and multifaceted challenges to regulatory bodies and law enforcement agencies [1]. The

proliferation of online gambling in Indonesia is now recognized as a significant public health concern, fueled

by a complex interplay of psychological, social, and regulatory factors that contribute to increased participation,

particularly among vulnerable young adult populations [2]. Gambling operators are observed to employ increasingly

sophisticated techniques, such as black hat Search Engine Optimization (SEO), and exploit vulnerabilities within

official websites, including government domains like ‘.go.id’, to covertly promote online gambling activities,

indicating a complex and highly adaptive operational strategy [3]. Furthermore, the phenomenon of online gambling
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in Indonesia is not an isolated issue of addiction but has demonstrated cascading negative societal effects, including

documented links to severe organized crimes such as human trafficking, thereby highlighting profound societal

repercussions that extend far beyond the immediate scope of gambling addiction itself [4]. The combination of

widespread social media use and the increasingly sophisticated and flexible nature of illegal promotional methods

presents a particularly difficult challenge in Indonesia, requiring countermeasures that are both advanced and

adaptable. As such, Indonesia offers a significant case that reflects global difficulties, where existing regulations

and enforcement efforts frequently lag behind the fast-paced, technology-driven development of online gambling

promotion tactics. The socio-economic consequences of online gambling are severe, impacting individuals and

communities significantly [2][4]. YouTube, a major platform for content and user comments, has become a key

venue for gambling-related discussions and promotions [5]. Studies by [6] and [5] highlight YouTube comments

as both a reflection of public perception, including stigma, and an active channel for gambling promotion, with

promotional comments showing distinct characteristics like higher density and repetition. The sheer volume of this

user-generated content makes manual moderation impractical [7], necessitating automated detection systems [8].

Research by [9] and [1] underscores the potential of Machine Learning (ML) and Deep Learning (DL) for this task

[10], especially supervised learning approaches [10]. However, the ever-changing characteristics of promotional

language call for flexible systems that can effectively balance precision and recall, aiming to reduce both undetected

promotional content and incorrect classifications [7].

This study compares two main automated approaches, such as traditional ensemble learning methods and

sequential deep learning architectures. Tree-based boosting algorithms like LightGBM, XGBoost, and CatBoost

[11], which combine multiple weak learners [12], have shown robust performance using Term Frequency-Inverse

Document Frequency (TF-IDF) features. TF-IDF quantifies word importance, providing discriminative features for

these algorithms. In contrast, sequential DL models like Recurrent Neural Networks (RNNs), Long Short-Term

Memory (LSTM) [13], and Gated Recurrent Units (GRU) [14] are designed to process sequential data and capture

long-range dependencies. These models often utilize Word2Vec embeddings [15], which provide dense, semanti

cally rich vector representations of words [16], as seen in [1]. While theoretically advantageous for understanding

context, the performance of LSTM/GRU models heavily depends on dataset size and quality.

A major challenge in this research is the highly imbalanced nature of the dataset, with gambling comments

representing only 10% of the data, which can bias models towards the majority class [17]. Deep learning models are

particularly prone to overfitting on such limited or imbalanced data, learning noise rather than generalizable patterns

[18]. This study indicates that while LSTM and GRU models performed well on test data, their holdout recall

was drastically reduced, a classic sign of overfitting. Regularization techniques like dropout and early stopping are

common countermeasures [19]. The primary objective of this research is to compare these ML paradigms on the

task of detecting gambling-related YouTube comments. The findings demonstrate that gradient boosting methods

(LightGBM and XGBoost) significantly outperform deep learning approaches in generalization, with LightGBM

achieving the highest F1-score. Consequently, for practical deployment on limited, imbalanced datasets, gradient-

boosting methods are recommended [20].

This research makes several key contributions to address this gap and differentiate itself from existing studies.

Firstly, we introduce a new, manually annotated dataset comprising 11,673 YouTube comments, specifically curated

for the task of gambling content detection in the Indonesian context. Secondly, we conduct a rigorous comparative

study of two distinct machine learning paradigms: traditional tree-based boosting methods (LightGBM, XGBoost,

CatBoost) using TF-IDF features against sequential deep learning models (LSTM and GRU) with Word2Vec

embeddings. Unlike prior work that focused on Twitter or the infiltration of official websites, our study specifically

targets the nuanced language and characteristics of gambling promotions within user-generated YouTube comments.

Furthermore, while research exists on general YouTube spam detection, this study provides a direct comparison

of the generalization capabilities of boosting and deep learning models on a highly imbalanced dataset created

explicitly for gambling content, thereby assessing their practical deployment readiness.

145



JUTI: Jurnal Ilmiah Teknologi Informasi – Volume 23, Number 2, July 2025: 144 – 160

The remainder of this paper is organized as follows. Section 2 reviews related research in the fields of gambling

content detection and text classification. Section 3 details the research methodology, including data collection,

preprocessing, feature extraction, and the models employed. Section 4 presents the experimental setup, results, and

a detailed analysis of the model performances. Finally, Section 5 concludes the study, summarizes the key findings,

and proposes directions for future work.

2. Related Research

This research specifically focuses on detecting gambling comments, particularly on YouTube, an area where

existing studies remain scarce. To establish a more comprehensive foundation for this work, the scope has been

expanded to include research from closely related domains such as text classification, spam detection, and online

gambling site detection. These fields offer methodological approaches and insights that prove valuable when

adapted to the challenge of identifying gambling-related comments. Through examining these interconnected areas,

this study seeks to uncover proven techniques and understand the challenges that directly inform the research

objectives.

A relevant study conducted by Perdana et al. [1] tackled the complex challenge of identifying gambling-

related content within the Indonesian social media landscape, where research remains particularly limited [1].

The researchers analyzed a comprehensive dataset of 6,038 tweets, employing multiple classification approaches

including Random Forest, Logistic Regression, and Convolutional Neural Networks, while also conducting compar

ative analyses of various text representation methods. Their investigation revealed frequently occurring promotional

terms such as 'link', 'situs', 'prediksi', 'jackpot', 'maxwin', and 'togel', providing valuable insights into the linguistic

patterns of Indonesian gambling promotions. The study demonstrated that combining TF-IDF feature extraction

with Random Forest classification yielded superior performance, achieving impressive results with a recall of 0.958

and precision of 0.966. These findings not only advance the methodological understanding of gambling content

detection but also offer practical applications for cybersecurity initiatives and law enforcement efforts aimed at

mitigating the harmful effects of online gambling promotions on Indonesian social media platforms.

While the previously discussed research focused on social media gambling comments detection, a related

security concern involves the infiltration of gambling content into official websites. Nurseno et al. [3] investigated

how gambling operators exploit government domains. The study analyzed 450,000 .go.id domains using a Python-

based web scraping algorithm that identified gambling-related keywords such as 'slot,' 'judi,' 'gacor,' and 'togel.'

The research revealed that 958 out of 1,482 suspected government sites had been compromised with hidden

gambling URLs, achieving a 99.1% detection accuracy. This work demonstrates the broader scope of online

gambling infiltration beyond social media platforms, highlighting the need for comprehensive detection approaches

across different digital environments. Additionally, Min and Lee [21] examined the rise of illegal online gambling

during the COVID-19 pandemic, employing a machine learning-driven approach that combined textual and image

features for high detection performance. Their model analyzed key attributes such as URLs, WHOIS, INDEX, and

landing page metadata across 11,172 websites, suggesting a strategy for dynamic resource utilization to enhance

classification accuracy. This study further underscores the need for adaptive and multi-modal detection strategies

in combating online gambling threats.

Another relevant study by Airlangga [20] examined the effectiveness of various deep learning models in de

tecting spam comments on YouTube. The research utilized a dataset comprising 1,956 real comments from popular

YouTube videos, representing both spam and legitimate content. Preprocessing included tokenization and padding

of text sequences to prepare them for input into six different models: Multilayer Perceptron (MLP), Convolutional

Neural Network (CNN), Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), Gated Recurrent

Unit (GRU), and models with attention mechanisms. The findings indicated that the LSTM model outperformed

other architectures with a test accuracy of 95.65%, emphasizing the critical role of sequential modeling in capturing

contextual information within user comments. CNN models also demonstrated strong performance by effectively

recognizing local patterns. These insights highlight the potential of combining sequential modeling and local feature

extraction for robust spam detection systems in online platforms. Xiao and Liang [22] evaluated eight traditional
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Fig. 1: Research workflows.

machine learning models for spam detection in YouTube comments, including Gaussian Naive Bayes, Logistic

Regression, K-Nearest Neighbors, Multilayer Perceptron, Support Vector Machine, Random Forest, Decision Tree,

and a voting classifier. Their results showed that Random Forest achieved nearly perfect performance, with an

average precision of 100% and an AUC-ROC of 0.9841, highlighting the potential of ensemble models in this

domain. These insights further demonstrate the versatility of both deep learning and traditional machine learning

approaches in spam detection tasks, reinforcing the importance of exploring diverse methodologies.

3. Research and Methodology

The research methodology follows a structured workflow illustrated in Fig. 1. The process begins with problem

identification, clarifying the scope and objectives of detecting gambling comments on YouTube. Data preparation

involves scraping relevant data from YouTube and manually labeling comments for classification. Preprocessing

is then performed, which includes removing punctuation, special characters, and stopwords to clean and normalize

the text data. Following preprocessing, data splitting divides the dataset into training, testing, and holdout subsets

to ensure unbiased evaluation.

Word embedding techniques are subsequently applied: tree-based boosting models (XGBoost, LightGBM,

CatBoost) utilize TF-IDF features, while Word2Vec embeddings are employed for LSTM and GRU models. This

step transforms textual data into numerical vectors suitable for model input. Modeling then implements and trains

the chosen algorithms, using the prepared features. Finally, evaluation is conducted using appropriate metrics (such

as precision, recall, and F1-score) to compare the models’ effectiveness. The structured workflow ensures that each

step builds on the previous one, enabling comprehensive analysis and reliable performance measurement.
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3.1. Dataset Description

The dataset used in this study was collected by scraping comments from 24 YouTube videos spanning a

diverse range of topics including daily life, entertainment, fashion, film, finance, health, hobbies, politics, sport,

technology, and travel, to ensure high variability in the data. The dataset comprises 11,673 rows divided into three

subsets: 70% for training, 20% for testing, and 10% for holdout evaluation. Notably, gambling comments represent

approximately 10% of the total dataset, making them the minority class in this distribution. The specific class

distributions are as follows: the training set contains 7,454 non-gambling and 717 gambling-labeled comments, the

test set includes 2,126 non-gambling and 209 gambling-labeled comments, and the holdout set comprises 942 non-

gambling and 225 gambling-labeled comments. Examples of non-gambling comments include casual discussions

such as "coach nova plis suruh pda bljr sepak penalti asli biar gk bapuk2 😢" (coach nova please tell the PDA

to learn penalty kicks so they don't suck 😢) and general observations like "hukum ekonomi barang ya murah

barang ya mahal aja udah" (economic law: goods are either cheap or expensive, that's it). In contrast, gambling-

related comments typically contain promotional content and winning claims, such as "𝗣 𝗟 𝗨 𝗧 𝗢 𝟴 𝟴 emang beda

main langsung menang gede 🔥 🔥" (PLUTO 88 is really different, play and win big immediately 🔥 🔥) and

withdrawal testimonials like "wd lancar banget nggak pake ribet" (withdrawal is very smooth without any hassle).

To ensure label reliability, each data point was annotated based on agreement among multiple authors, with inter-

annotator reliability measured using Cohen's kappa coefficient [23], a statistical measure used to evaluate inter-rater

agreement for categorical items. This structure promotes consistent labeling and enables robust evaluation of model

performance.

3.2. Preprocessing

Minimal text preprocessing was applied to preserve key information relevant to gambling content. Text labeled

as gambling often contains unique character formatting, emojis, and numeric combinations that help identify online

gambling brands (e.g., dora77, pluto88, king328). Excessive cleaning could risk removing these features and signif

icantly reduce the dataset’s informative content. Consequently, only basic preprocessing steps were performed:

punctuation and special characters were removed, while letters, digits, and spaces were retained. The text was then

tokenized, and stopwords were removed to emphasize the most meaningful words for model input.

3.3. Word Embedding

Numerical text processing plays a crucial role in enabling machine learning algorithms to interpret and analyze

textual data. In this study, two primary methods were implemented to convert text into numerical form Term

Frequency-Inverse Document Frequency (TF-IDF) and Word2Vec. TF-IDF transforms text into a sparse matrix

based on the frequency of words within and across documents, emphasizing the importance of rare but informative

terms. On the other hand, Word2Vec generates dense vector representations by capturing the semantic relationships

between words based on their surrounding context.

A. TF-IDF

TF-IDF is a statistical model that assesses the importance of words within a collection of documents. It is

derived by multiplying two measurements: the TF matrix, which is a two-dimensional array, and the IDF vector,

which is a one-dimensional array. Numerous enhancements have been suggested by researchers to refine the

traditional TF-IDF model [24]. TF-IDF is straightforward and efficient to calculate, especially in comparison to

the more intricate neural embedding techniques. Term Frequency (TF) quantifies how often a term 𝑡 appears in a

document 𝑑, often normalized to avoid bias toward longer documents, as shown in (1)

𝑇𝐹(𝑡, 𝑑) = 𝑓𝑡, 𝑑 / 𝛴𝑘 𝑓𝑘, 𝑑 (1)

where 𝑓𝑡, 𝑑 denotes the raw count of term 𝑡 in document 𝑑, and the denominator is the total word count in

document 𝑑𝑡. This step highlights the significance of a word within a particular document. Conversely, Inverse

Document Frequency (IDF) assesses the overall importance of a term 𝑡 throughout a set of documents 𝑁 . IDF is

designed to decrease the weight of frequently occurring words across documents and increase the weight of less

common, more informative terms. It is defined in (2)
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𝐼𝐷𝐹(𝑡) = 𝑙𝑜𝑔(𝑁 / (1 + 𝑑𝑓𝑡 )) (2)

where 𝑁  represents the total number of documents, and 𝑡 is the number of documents containing the term.

Adding 1 to the document frequency count (known as Laplace smoothing) avoids division by zero for terms absent

in any document or in novel documents. Logarithms are utilized to diminish the influence of excessively rare words

on the weights. The TF-IDF score for a term 𝑡 in document 𝑑𝑡 is calculated as the product of its TF and IDF values

given in (3)

𝑇𝐹𝐼𝐷𝐹(𝑡, 𝑑) = 𝑇𝐹(𝑡, 𝑑) × 𝐼𝐷𝐹(𝑡) (3)

This combined measure effectively highlights terms that are frequently used in a specific document but are

uncommon across others, thus serving as significant indicators of the document's content [10].

B. Word2Vec

Unlike the frequency-based TF-IDF, Word2Vec is a predictive technique that uses a neural network to learn

dense vector representations of words from a large text corpus [25]. These representations, called word embeddings,

capture semantic and syntactic relationships between words. This means that words appearing in similar contexts

will have proximate vector representations in the vector space. A key advantage of these embeddings is their ability

to capture analogies, famously demonstrated by the vector operation vector ('King') – vector ('Man') + vector

('Woman'), which results in a vector very close to the vector ('Queen'). This capability makes Word2Vec highly

powerful for tasks requiring a deeper understanding of meaning.

Word2vec comprises two architectures, Continuous Bag of Words (CBOW) and Skip-gram. Continuous Bag

of Words (CBOW) predicts the current (target) word based on the surrounding context words [26]. For example,

given the context 'the cat sat on the …', the CBOW model would be trained to predict the word 'mat'. The context

words are usually averaged before predicting the target word, meaning the order of the words in the context is

not explicitly preserved in this averaging step. CBOW is generally faster to train and performs well for frequently

occurring words. The CBOW model takes one-hot encoded context words, projects them into an N-dimensional

embedding space using an input weight matrix (V), averages these context embeddings, and then uses an output

weight matrix (U) and softmax to predict the target word. The goal is to maximize the probability of the target word

given its context.

Skip-gram works in the opposite way to CBOW: it predicts surrounding context words based on a single target

word. Using the same example, given the target word 'sat', the Skip-gram model would be trained to predict context

words like 'the', 'cat', 'on', and 'the'. Skip-gram typically performs better for less frequent words and larger datasets

and often captures finer-grained semantic relationships. This architecture gives more weight to closer context words.

The objective function for Skip-Gram is to maximize the probability of a context word 𝑤𝑡+𝑗 ​ given a target word

𝑤𝑡 given in (4)

𝑚𝑎𝑥∏
𝑇

𝑡=1
∐

−𝑚≤𝑗≤𝑚, 𝑗≠0
𝑃(𝑤𝑡+𝑗 | 𝑤𝑗) (4)

where 𝑚 is the size of the context window [26][27]. The input of Skip-Gram is a one-hot encoded target word,

projected onto its embedding using V. This embedding is then used together with U and softmax to predict multiple

context words in a window [27].

To make the training process efficient on large corpora, Word2Vec is often implemented with optimization

techniques such as negative sampling. Instead of updating the weights for all words in the vocabulary at each

iteration, negative sampling only updates the weights for the correct context words (positive samples) and a small

number of random, incorrect words (negative samples) [28]. During backpropagation, both V and U are updated to

maximize the joint probability of the context words given the target word.
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3.4. Model Selection

A. XGBoost

XGBoost (Extreme Gradient Boosting) is an optimized and scalable implementation of Gradient Boosting,

known for its speed and performance. This algorithm has been widely adopted due to its success in various machine

learning challenges [29]. It optimizes the following objective at each iteration as given in (5)

𝐿(𝑡) =∑
𝑛

𝑖=1
𝑙(𝑦𝑖, 𝑦𝑖(𝑡−1) + 𝑓𝑡(𝑥𝑖)) + 𝛺(𝑓𝑡) (5)

where 𝑙 is the loss function (e.g., log loss), and 𝛺(𝑓𝑡) is a regularization term given in (6)

𝛺(𝑓) = 𝛾𝑇 + 1
2
𝜆∑

𝑇

𝑗=1
𝑤2
𝑗 (6)

Where 𝑇  is the number of leaves in the decision tree, and 𝑤𝑗 is the weight of leaf 𝑗. This regularization helps

in selecting a simpler and more predictive function [29]. XGBoost uses a second-order Taylor expansion of the loss

function to optimize the objective more efficiently and accurately during additive training [29]. The algorithm has

a novel algorithm to handle sparse data (e.g., from TF-IDF or one-hot encoding) efficiently. The algorithm learns a

default direction for missing values ​​at each node, processing only non-missing entries, which significantly speeds

up computation on sparse datasets [29].

B. LightGBM

LightGBM is another GBDT (Gradient Boosting Decision Tree) framework developed by Microsoft, designed

for high efficiency, speed, and lower memory usage, especially on large datasets. This algorithm often trains faster

than XGBoost [30] Unlike XGBoost which uses level-wise (horizontal) tree growth, LightGBM applies a leaf-wise

growth strategy, which is expanding branches from leaves with the largest loss reduction [31]. Although this method

can significantly improve accuracy, it also has the potential to cause overfitting, so it needs to be combined with

regularization techniques. The objective function is given in (7)

𝑚𝑖𝑛∑
𝑛

𝑖=1
𝑙(𝑦𝑖, 𝑦𝑖) +∑

𝐾

𝑘=1
𝛺(𝑓𝑘) (7)

To improve training efficiency without sacrificing accuracy, LightGBM introduces the Gradient-based One-

Side Sampling (GOSS) technique, which retains all data with large gradients (generally representing data that has

not been well-learned), and only randomly samples data with small gradients (instances that have been relatively

mastered by the model) [30]. In addition, this algorithm also uses the Exclusive Feature Bundling (EFB) technique,

which performs very effective dimensionality reduction for high-dimensional and sparse data such as the results of

TF-IDF. The main purpose of EFB is to reduce the number of features by combining mutually exclusive features,

namely features that rarely have non-zero values ​​together in a single sample [30]. With the combination of GOSS

and EFB, LightGBM is not only fast but also memory and computationally efficient, making it ideal for text-based

and big data classification applications.

C. CatBoost

CatBoost, short for Categorical Boosting, is a gradient boosting algorithm developed by Yandex that is

specifically designed to handle categorical features effectively and reduce overfitting caused by target leakage [32].

Unlike traditional boosting models, CatBoost introduces advanced techniques such as Ordered Boosting, Permuted

Target Statistics (Ordered TS), and Oblivious Decision Trees, making it particularly powerful for classification tasks

involving categorical or sparse textual data. Ordered Boosting addresses the issue of target leakage that commonly

arises in standard gradient boosting. In this approach, CatBoost applies a random permutation to the training data
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and ensures that, for each training instance, the model used to estimate its gradient has been trained only on the

preceding samples in that permutation [32].

Let π denote a random permutation of the dataset indices. Then, for the 𝑖-th instance, the prediction used to

compute the gradient is based only on instances indexed by {𝜋1, 𝜋2, ..., 𝜋𝑖−1}. This ensures that the model does not

"see" the true label of the current instance when computing the gradient, thereby producing less biased residuals

and improving the model’s generalization ability. Handling categorical features with high cardinality is a common

challenge in machine learning. Instead of using typical approaches like one-hot encoding or mean encoding,

CatBoost employs Ordered Target Statistics, a method that computes the target-based numeric representation of

each categorical value using only preceding samples in the permutation. For a categorical feature 𝑥𝑐 ​, the target

statistic for the 𝑖-th instance is computed as given in (8)

𝑇𝑆𝑖 =
∑𝑗<1 𝑦𝑗 ⋅ 1𝑥𝑗=𝑥𝑖 + 𝑎
∑𝑗<1 𝑦𝑗 ⋅ 1𝑥𝑗=𝑥𝑖 + 𝑏

(8)

here 𝑦𝑗 is the target value of the 𝑖-th sample, 1𝑥𝑗=𝑥𝑖 ​​ is an indicator function that returns 1 if the category values

match, 𝑎 and 𝑏 are smoothing parameters to prevent division by zero and reduce overfitting.

This formulation ensures that the transformation of categorical features does not leak any target information

from the current instance, which is critical for model reliability. When combined with Ordered Boosting, this

mechanism effectively avoids overfitting from categorical encodings [32]. Another distinctive feature of CatBoost

is its use of Oblivious Decision Trees. Unlike traditional decision trees where splits can vary at each node, an

oblivious tree applies the same split condition at every node at the same level, resulting in a balanced and symmetric

structure.

D. LSTM

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) specifically designed to

capture long-term dependencies in sequential data. Unlike standard RNNs, which suffer from the vanishing gradient

problem during training, LSTM introduces a memory cell mechanism that allows gradients to flow unchanged over

long sequences. This makes it highly effective for learning from data with long-range temporal patterns, such as

natural language or time series data [33]. The internal structure of an LSTM includes three gates that regulate the

flow of information: the input gate, the forget gate, and the output gate.

The input gate 𝑖𝑡 determines how much of the new input 𝑥𝑡 should influence the current cell state, and is

computed as given in (9)

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (9)

The forget gate 𝑓𝑡 ​ decides what portion of the previous cell state 𝐶𝑡−1 should be retained as shown in (10)

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (10)

The output gate 𝑜𝑡​ controls how much of the cell state should be exposed to the next layer or output, and is

calculated as in (11)

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (11)

In these equations (8), (9), (10), 𝑊𝑖​, 𝑊𝑓 , and 𝑊𝑜 are weight matrices; 𝑏𝑖​, 𝑏𝑓 , and 𝑏𝑜​ are bias vectors; ℎ𝑡−1 is

the hidden state from the previous time step; and σ represents the sigmoid activation function, which outputs values

in the range [0, 1]. This gating mechanism allows LSTM to selectively update and preserve information over time,

making it a powerful model for sequential tasks [33].
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E. GRU

The Gated Recurrent Unit (GRU) neural network is a specialized form of the Recurrent Neural Network

(RNN), crafted to efficiently keep track of long-term information dependencies. This model streamlines the Long

Short-Term Memory (LSTM) neural network. While LSTM employs three gates forget, input, and output, GRU

merges these functions into two gates: the update gate and the reset gate. This composition minimizes the number

of parameters, streamlines the network architecture, reduces training expenses, and enhances the model's capability

to retain information across extended sequences. The GRU architecture includes an input layer, an output layer,

and hidden layers composed of GRU units. For an input sequence (𝑥1, 𝑥2, ..., 𝑥3), the update gate, reset gate, and

hidden state of a GRU unit at time t are defined by the following equations (12)-(16) [34].

• Reset Gate

𝑟𝑡 = 𝜎(𝑊𝑟[𝑥𝑡, ℎ𝑡−1]) (12)

• Update Gate

𝑧𝑡 = 𝜎(𝑊𝑧[𝑥𝑡, ℎ𝑡−1]) (13)

• Candidate Hidden State

𝑛𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ[𝑥𝑡, 𝑟𝑡, ℎ𝑡−1]) (14)

• Hidden State

ℎ𝑡 = (1 − 𝑧𝑡)ℎ𝑡−1 + 𝑧𝑡 ⋅ 𝑛𝑡) (15)

• Output

𝑦𝑡 = 𝜎(𝑊𝑜ℎ𝑡) (16)

where 𝑟𝑡 represents the reset gate output at time 𝑡, controlling how much past information is forgotten. 𝑧𝑡
represents the update gate, deciding how much of the candidate hidden state 𝑛𝑡 is retained for the new hidden state:

ℎ𝑡, 𝑊𝑟, 𝑊ℎ , and 𝑊𝑜are the weight matrices associated with each gate or transformation. 𝜎 denotes the sigmoid

activation function. tanh is the hyperbolic tangent activation function. The GRU’s simplified gating mechanism

enables it to efficiently manage long-term dependencies by continuously discarding irrelevant information and

updating the hidden state.

3.5. Evaluation Metrics

To assess the model's performance, this research uses several widely accepted evaluation metrics given in

(17)-(20)

• Accuracy measures the proportion of correct predictions:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(17)

• Precision indicates the correctness of positive predictions:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(18)

• Recall measures the ability to detect true positives:

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(19)

• F1-Score combines precision and recall into a single metric:
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Table 1: LSTM Network Architecture.

Layer Input Dimensions Output Dimensions Function

Embedding (64, seq_len) (64, seq_len, 100) Maps word indices to 100-dimensional Word2Vec vectors

Dropout (64, seq_len, 100) (64, seq_len, 100) Applies dropout to the embedded sequences to prevent overfitting.

LSTM (64, seq_len, 100) (64, seq_len, 128) Processes Sequence data and outputs hidden states

Dropout (64,128) (64,128) Applies dropout to the last hidden state of the LSTM output before the fully

connected layer.

Fully Connected (64, 128) (64, 1) → (64,) Maps hidden state to binary classification output

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙

(20)

where TP, TN, FP, and FN stand for True Positives, True Negatives, False Positives, and False Negatives,

respectively.

4. Experiments and Results

4.1. Experimental Setup, Model Training and Testing

All tasks including dataset creation, preprocessing, and modeling were conducted in the Kaggle environment.

Kaggle’s platform provides a convenient combination of hardware and software resources, supporting efficient

experimentation and model development. Data preparation and preprocessing tasks were executed using Kaggle’s

shared CPU resources, while the T4x2 GPU was utilized for training the LSTM and GRU models, accelerating

deep learning workloads significantly. Python was the primary programming language used, and common libraries

such as pandas, NumPy, scikit-learn, and Pytorch, were employed to implement the various preprocessing steps,

machine learning models, and evaluation metrics. The training and evaluation results of each model are presented

in tabular form to facilitate comparison. The results include training time, test set metrics (precision, recall, F1-

score), and holdout set metrics (precision, recall, F1-score). To address the extreme class imbalance in the dataset,

models are sorted in descending order of holdout set F1-score, highlighting models with better generalization to

unseen data. Additionally, learning curves for the LSTM and GRU models (loss vs epoch) are presented to illustrate

training convergence and stability.

A. Tree-Based Boosting Models

The tree-based boosting models used in this study include LightGBM, XGBoost, and CatBoost. These models

were employed in their standard, off-the-shelf configurations, without any manual hyperparameter tuning. Each

model was trained on the TF-IDF vectorized representation of the training dataset, which converts textual data

into numerical features suitable for traditional machine learning algorithms. This approach allows the models to

capture term importance while maintaining computational efficiency. The default settings provided by the respective

libraries were used to ensure a fair baseline comparison with deep learning methods.

B. Deep Learning Models

The architectural details of the LSTM and GRU models are summarized in Table 1 and Table 2. Each model

receives tokenized and padded text inputs, maps them through an embedding layer initialized with pre-trained

Word2Vec vectors, and processes the sequential data using its respective recurrent unit. To mitigate overfitting,

dropout layers are consistently applied within both models. The final hidden state of the sequence is then passed

through a fully connected layer to produce a binary output. The main distinction between the models is that they

use different types of recurrent units, with one employing GRU and the other LSTM.
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Table 2: GRU Network Architecture.

Layer Input Dimensions Output Dimensions Function

Embedding (64, seq_len) (64, seq_len, 100) Maps word indices to 100-dimensional Word2Vec vectors

Dropout (64, seq_len, 100) (64, seq_len, 100) Applies dropout (p = 0.5) to embeddings

GRU (64, seq_len, 100) (64, seq_len, 128) Processes sequence data and outputs hidden states

Dropout (64, 128) (64, 128) Applies dropout (p = 0.5) to the last time step

Fully Connected (64, 128) (64, 1) → (64,) Maps hidden state to binary classification output

Table 3: Evaluation Result for Each Model.

Model Precision (Test/Holdout) Recall (Test/Holdout) F1-Score (Test/Holdout) Time (s)

LightGBM 0.9613 / 0.8912 0.9632 / 0.8886 0.9612 / 0.8737 0.42

XGBoost 0.9678 / 0.8745 0.9687 / 0.8680 0.9668 / 0.8428 0.74

CatBoost 0.9739 / 0.8650 0.9743 / 0.8569 0.9729 / 0.8247 34.36

LSTM 0.9610 / 0.9699 0.9426 / 0.5733 0.9517 / 0.7207 12.80

GRU 0.9849 / 0.9826 0.9378 / 0.5022 0.9340 / 0.6647 11.16

4.2. Analysis of Results

A. Model Performance Evaluation

Table 3 provides a comprehensive evaluation of each model's performance on both test and holdout datasets,

considering precision, recall, F1-Score, and training time. In evaluating model performance for this classification

task, F1-score emerges as the most critical metric due to the extremely imbalanced nature of the dataset. When

dealing with imbalanced datasets, accuracy alone can be misleading as a model could achieve high accuracy

simply by predicting the majority class, while precision and recall individually provide incomplete pictures of

model performance. F1-score, being the harmonic mean of precision and recall, offers a balanced assessment that

penalizes models with poor performance on either metric, making it particularly valuable when both false positives

and false negatives carry significant costs. The dataset's severe class imbalance means that a model achieving high

precision but low recall would fail to identify many positive instances, while a model with high recall but low

precision would generate excessive false alarms. F1-score effectively captures this trade-off by requiring models

to maintain reasonable performance across both dimensions. LightGBM demonstrates strong holdout performance,

achieving a precision of 0.8912 and recall of 0.8886, with an F1-score of 0.8737. This indicates a balanced and

consistent generalization to unseen data, making it a highly effective model. XGBoost follows closely with holdout

precision of 0.8745, recall of 0.8680, and an F1-score of 0.8428, suggesting its robustness in handling new samples.

Both LightGBM and XGBoost exhibit impressive stability across different datasets, which is crucial for reliable

real-world deployment, and achieve their results with relatively fast training times (0.42s and 0.74s, respectively).

CatBoost achieves respectable holdout performance, with precision at 0.8650, recall at 0.8569, and an F1-score of

0.8247. While its training time is considerably higher at 34.36s, its consistency positions CatBoost as a competitive

and reliable alternative, though slightly behind LightGBM and XGBoost in terms of holdout metrics. In contrast,

the deep learning models (GRU and LSTM) show promising test performance but exhibit significant challenges

with generalization to the holdout set. GRU achieves exceptionally high test precision (0.9849) and recall (0.9378);

however, its holdout recall drops drastically to 0.5022, with an F1-score of 0.6647. Similarly, LSTM performs well

on the test set with a precision of 0.9610 and recall of 0.9426, but its holdout recall is considerably lower at 0.5733,

resulting in an F1-score of 0.7207. These disparities highlight a clear overfitting issue for the deep learning models.

B. Training Dynamics and Convergence

This subsection analyzes the learning behavior of the deep learning models during training. All deep learning

experiments were consistently conducted for a total of 20 epochs. The progression of training and validation loss

over these epochs is critically examined through their respective loss curves. These visualizations provide key

insights into model convergence, stability, and potential overfitting.
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Fig. 2: LSTM learning curve (loss over epochs).

Fig. 3: GRU learning curve (loss over epochs).

The LSTM learning curve, illustrated in Fig. 2, initially exhibits a relatively steady training loss around 0.30

for the first 5 to 6 epochs, indicating a period of slower initial learning. Following this, a sharp decline in training

loss is observed, dropping significantly between epoch 6 and epoch 9, before converging to near-zero loss (below

0.01) by approximately epoch 10. This delayed but ultimately strong convergence reflects LSTM's more complex

internal mechanisms, which may require more iterations to fully capture intricate sequential patterns. Conversely,

the GRU learning curve, presented in Fig. 3, demonstrates a much more rapid and steep decline in training loss

from the very first epoch. The loss quickly drops from over 0.30 to below 0.05 by epoch 3-4, and reaches near-
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zero loss (below 0.01) by approximately epoch 6. This swift convergence suggests that the GRU model, with its

comparatively simpler architecture, is capable of learning essential patterns more quickly from the training data.

For both deep learning models, the rapid convergence to near-zero training loss, coupled with the significant

drop in recall on the holdout set (as detailed in Section 4.2.1), strongly indicates a phenomenon of overfitting. This

suggests that while the models are highly effective at memorizing the training data, they struggle to generalize

the learned features to unseen data. The learning curves in Fig. 2 and Fig. 3 underscore the critical importance of

regularization techniques to prevent such overfitting and improve generalization. While dropout has already been

applied in both GRU and LSTM models, additional strategies such as early stopping, more aggressive dropout rates,

or further tuning of regularization parameters may be necessary to enhance their generalization performance and

bridge the gap between training and holdout metrics.

C. Feature Insight

Further insights into the distinctive characteristics of the comment categories are provided by the TF-IDF

word frequency analysis. Fig. 4 and 5 reveal key terms that differentiate gambling from non-gambling comments.

In Fig. 4 for non-gambling discussions, words like 'bang', 'yg', and 'kiko' frequently appear. These terms are

often specific to general conversation, potentially indicating popular culture references, common exclamations, or

informal expressions prevalent in everyday online interactions. Conversely, gambling-related comments in Fig. 5

are strongly characterized by terms such as 'main' (play), 'rezeki' (fortune/luck), and 'banget' (very/really), which

are directly associated with the activity. 'Main' explicitly points to the act of gambling, 'rezeki' highlights the hope

for winnings, and 'banget' often emphasizes the intensity or desire related to the outcome. This clear distinction

in vocabulary underscores the unique linguistic patterns within each class, offering a deeper understanding of the

textual features that contribute to the classification models' performance. A noticeable aspect of the analysis is

the emergence of several high-frequency words, such as 'banget', 'ya', 'aja', 'gw', 'ga', 'gak', 'lu', and 'udah', which

often function as stopwords in the Indonesian language. While these words are crucial for grammatical structure

and conveying subtle meanings in human communication, their high prevalence across both gambling and non-

gambling contexts, as seen in their relatively high TF-IDF scores, suggests they might introduce noise or dilute the

distinctiveness of more discriminative terms. Their presence can sometimes inflate the importance of less relevant

words, potentially affecting model precision. For future research, it is recommended that the handling of stopwords

be revisited with stricter and more nuanced methods. This could involve exploring custom stopword lists tailored to

the specific domain, implementing more aggressive stemming or lemmatization techniques, or utilizing advanced

word embedding models that can better distinguish between semantically rich words and functional terms, thereby

enhancing the models' ability to focus on truly indicative language patterns. Ultimately, a more refined approach

to stopword management is anticipated to yield more robust and accurate classification, particularly benefiting the

generalization capabilities of the deep learning models.

4.3. Qualitative Prediction Analysis

This section presents an in-depth qualitative prediction analysis of the two most effective machine learning

models, with LGBM representing traditional machine learning and LSTM representing deep learning. The goal is to

move beyond quantitative metrics and delve into why each model makes certain predictions, examining examples

of both correct and incorrect classifications. This in-depth look at the predictive behavior of each approach will

illuminate their strengths and weaknesses, providing valuable insights into practical application for this specific

text classification task.

)

Based on the qualitative prediction analysis results presented in Table 4 and 5, both LGBM and LSTM models

demonstrate distinct predictive behaviors that reveal their underlying strengths and limitations. The LGBM model

shows strong performance in identifying clear sentiment indicators, correctly classifying comments with explicit

emotional expressions such as "wede aman nggak prnh…" and "gak bosan main KING328…" while successfully

recognizing neutral content like plotwist references and popular culture discussions. However, the model struggles
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Fig. 4: TF-IDF words in non-gambling comments.

Fig. 5: TF-IDF words in gambling comments.

with nuanced language patterns, incorrectly classifying comments containing gaming terminology ("sketer muncul

auto jepek…") and complex contextual expressions that require deeper semantic understanding. The LSTM model

exhibits superior contextual awareness, accurately predicting comments with subtle emotional undertones like
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Table 4: LGBM Qualitative Prediction Analysis

Prediction Type Label Comments

Correct 1 "wede aman nggak prnh…", "gak bosan main 𝑲𝑰𝑵𝑮𝟑𝟐𝟖…", "modal 50 ribu jepe lgsng wede…"

0 "plotwist 😂…", "955 busett make kaya gitu…", "manfaat populer ya negara susah fakta…"

Incorrect 1 "sketer muncul auto jepek…", "keberuntungan berpihak 𝑲𝑰𝑵𝑮𝟑𝟐𝟖 ⚡ 💰🔥…", "𝗠𝗜𝗬𝗔𝟴𝟴 bantu gue lewatin

tanggal tua keluh 🎉 ✨…"

0 "berisik cuan rungkad iya 👎…", "mantap abang ku petualangan terbaik ✨👍…", "bahas cari duit asing bikin

ngo lsm…"

Table 5: LSTM Qualitative Prediction Analysis

Prediction Type Label Comments

Correct 1 "modal gacur lgsng jepe brusan…", "rezeki nggak kemana makasih 𝑲𝑰𝑵𝑮𝟑𝟐𝟖…", "gacir bener maen udh

jepe…"

0 "crows zero film surealis yak…", "ijin rangkumkan pertandingan lihat 1 timnas korsel individu tim timnas

17thn indonesia 2 kalah tekni…", "p balap…"

Incorrect 1 "𝐌𝐎𝐍𝐀𝟒𝐃 emang top editing rapi vibesnya asik sukses 🙌…", "modal kaya coba aja 𝑲𝑰𝑵𝑮𝟑𝟐𝟖 🔥 💰💎…",

"alhamdulillah 𝐌𝐎𝐍𝐀𝟒𝐃 menarik cerita relate 🙏…"

0 "keren banget bg puas menonton video abang nyaman memuaskan salam jateng 👌…", "udh keras gini mlah

nambah suaranya halus…", "berisik cuan rungkad iya 👎…"

"modal gacur lgsng jepe brusan…" and "rezeki nggak kemana makasih KING328…" while correctly identifying

neutral content such as film discussions and technical gaming references. Nevertheless, the LSTM model encounters

difficulties with ambiguous expressions and complex semantic relationships, as evidenced by its misclassification

of comments containing mixed emotional signals and culturally specific references. The analysis reveals that

while both models demonstrate competency in straightforward sentiment detection, their failure cases highlight the

ongoing challenges in natural language processing, particularly in handling colloquial expressions, gaming-specific

terminology, and culturally embedded linguistic patterns that require sophisticated contextual interpretation.

5. Conclusion

This study conducted a comprehensive comparison of machine learning approaches for handling extremely

imbalanced datasets, evaluating both traditional gradient boosting methods and deep learning models within the

Kaggle environment, leveraging its CPU and T4x2 GPU resources. The experimental results reveal significant

insights into model performance, generalization capabilities, and practical deployment considerations for text

classification, specifically focusing on the F1-score due to the severe class imbalance.

The gradient-boosting ensemble methods, particularly LightGBM and XGBoost, demonstrated superior

overall performance and reliability. LightGBM achieved the highest holdout F1-score (0.8737) with balanced

precision (0.8912) and recall (0.8886), indicating robust generalization to unseen data. XGBoost followed closely

with comparable holdout metrics (F1-score: 0.8428, precision: 0.8745, recall: 0.8680), confirming the effectiveness

of gradient-boosting approaches for imbalanced classification tasks. Both models also exhibited fast training times

(0.42s and 0.74s, respectively). CatBoost also showed competitive performance (holdout F1-score: 0.8247) but with

considerably higher computational costs during training (34.36s). All tree-based models were trained on TF-IDF

vectorized text without manual hyperparameter tuning.

In contrast, the deep learning models (GRU and LSTM) exhibited a clear pattern of overfitting despite achiev

ing exceptional performance on the test set. The GRU model reached exceptionally high test precision (0.9849)

and recall (0.9378) but suffered from severely degraded holdout recall (0.5022), resulting in a lower holdout F1-

score (0.6647), indicating poor generalization. Similarly, LSTM showed strong test performance (precision: 0.9610,

recall: 0.9426) but failed to maintain consistency on holdout data (holdout recall: 0.5733, F1-score: 0.7207). The

learning curves for both GRU and LSTM revealed rapid convergence to near-zero training loss (below 0.01 by
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approximately epoch 6 for GRU and epoch 10 for LSTM), suggesting they memorized training patterns rather than

learning generalizable features, even with the application of dropout layers and pretrained Word2Vec embeddings.

The stark performance gap between test and holdout sets for deep learning models highlights a critical

limitation when working with imbalanced datasets and limited data volumes. While these models can capture

complex non-linear patterns, they require substantial amounts of training data to learn generalizable representations

effectively. The dataset size in this study appears insufficient for deep learning approaches to reach their full

potential, as evidenced by their rapid overfitting and poor generalization performance. This limitation, combined

with their susceptibility to overfitting, makes them less suitable for practical deployment without extensive regular

ization techniques and significantly larger datasets. Qualitative analysis further revealed that while deep learning

models showed superior contextual awareness, they struggled with ambiguous expressions and complex semantic

relationships.

The gradient boosting methods, conversely, demonstrated more stable and consistent performance across

different data distributions and proved to be proficient in identifying clear sentiment indicators but struggled with

nuanced language. For real-world applications dealing with extreme class imbalance and limited dataset sizes,

this study recommends prioritizing gradient boosting methods, particularly LightGBM, due to their superior gener

alization capabilities, computational efficiency, and ability to perform well with smaller datasets. Deep learning

approaches may be more suitable when larger, more comprehensive datasets become available. Future work should

explore advanced regularization techniques for deep learning models, including more aggressive dropout rates,

early stopping, and data augmentation strategies to improve their generalization performance. Additionally, inves

tigating ensemble approaches that combine the pattern recognition capabilities of deep learning with the robustness

of gradient-boosting methods presents a promising research direction. The findings underscore the importance

of evaluating models on truly independent holdout sets rather than relying solely on cross-validation or test set

performance, particularly when dealing with imbalanced data where overfitting risks are elevated. Furthermore,

future research should consider more nuanced stopword management and advanced word embedding models to

enhance the distinctiveness of discriminative terms in text classification. It would also be beneficial to explore

more sophisticated deep learning architectures, such as bidirectional models like BiLSTM and BiGRU, or even

Transformer-based models, as these could potentially capture more complex contextual dependencies in imbalanced

text data.
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