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ABSTRACT

The entry of Autonomous Aerial Vehicles (AAV) has reshaped multiple industries through novel solutions such as

transport, monitoring, and deliveries. Nevertheless, the existence of dynamic operating environments and the unpredictability

of barrier emergence constitute a complicated path planning challenge that is difficult to cope with. Current methods of dynamic

obstacle avoidance, Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks, accomplished the

task and became the essential part of AAV navigation systems development. These techniques may work, but they have a

disadvantage of being slow in processing and less energy efficient, which are important for a real-time operation and for a

mission which lasts for a long time. The purpose of the research is to fill up the identified gaps by introducing a Gated Recurrent

Unit (GRU) based predictive model for dynamic obstacle avoidance in AAV’s. While the previous models concentrate on the

improvement of reaction time and energy consumption without the degradation of computational efficiency, the recent GRU

model is particularly designed for such purpose. It is realized through a streamlined design that facilitates rapid and precise

object trajectory predictions, thus, making AAVs be able to rethink their paths in advance of any obstacles lurking. We show

that the RNN-based GRU model is benchmarked significantly better than the RNN and LSTM models in simulated settings.

In the Eco mode, the model GRU responded in 0.35 seconds in low-speed and its energy consumption never exceeded 130

units even in the high-speed scenarios with maximum load. Path efficiency was preserved and the path length was kept to the

minimum in most cases, which indicates the model’s capability in finding the most direct paths. Additionally, computer loads

were at a tolerable level, thus further showing the applicability of this model for systems on-board having inducted limits for

their processing capabilities. GRU-based model comes out as a robust and economical technique for the obstacle avoidance,

giving a potential solution to the critical problems of AAVs.

Keywords: AAV: Autonomous Aerial Vehicles, dynamic obstacle avoidance, gated recurrent units, predictive modeling, real-

time navigation systems

1. Introduction

AAV is known to be a smart technology that can shake up numerous industries. AAVs can deliver the required

items to distant areas, control crop production management, and reduce urban traffic jams [1]. However, airspace

management is very complicated in unregulated airspace, which AAV are confronted with the dynamic obstacle

avoidance. Navigating through the three-dimensional airspace with both static and dynamic obstacles such as

buildings, birds, and other unmanned aerial vehicles is a huge challenge for AAVs [2].

For a stakeholder community to accept and use the AAVs in the national airspace, a dynamic obstacle avoidance

is essential, which ensures the safety, dependability, and efficiency. Traditional AAV planning algorithms produce
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Fig. 1: Workflow of AAV Dynamic Obstacle Avoidance System.

paths with fixes obstacle placements and the routes are of static nature [3]. These techniques are not supposed to

work in the areas of dynamic context where the challenges are unpredictable. Adaptable innovations like RNNs and

LSTMs have been the center of the attention in the research. These neural networks are useful ones for obstacle

trajectory prediction owing to the fact that they process sequential data. Albeit they have advanced, these algorithms

have restrictions, particularly in quick and dynamic environments where efficient decision making is imperative.

They require substantial energy and computing resources, thus becoming impractical for AAVs that face limitations

in terms of computing capacity and energy. Fig. 1 represents a complex system in which controlled airspace is

shared with static and dynamic obstacles for AAVs.

Automated vehicles with sophisticated sensors first perform “Dynamic Environment Mapping” by detecting

obstacles. A prior “RNN/LSTM Processing” step processes raw data, which will further make the classical route

planning algorithms take into account known obstacles in the well-predicted trajectories. When it comes to high-

speed or hyper-populated conditions, RNN and LSTM models are quite restrictive. They utilize the “GRU-Based

Predictive Model.”

This model is robust because it interprets the data dynamics even better, especially by means of the GRU’s

efficient design, therefore it becomes less compute-intensive, less energy hungry, and it solves the vanishing gradient

problem. “Obstacle Avoidance Maneuvering” is one of the GRU model’s predictive capabilities, where the AAV

can sensibly adjust its course of movement in real-time to evade impediments predicted and unforeseen for safety

and efficiency. “Safety & Efficiency Monitoring,” which evaluates moves and feeds back to the AAV’s navigation

algorithms, evaluates performance. In a “Control & Command Center,” operational data and performance metrics

are sent to human operators so they may act. This GRU-based approach solves dynamic obstacle avoidance

problems in AAV navigation, making it a major improvement.

The GRU model improves AAV reliability and sophistication by balancing speed, computing efficiency,

and energy consumption. Such technical advances are crucial as AAVs become more widespread in emergency

supply delivery, urban transit, and precision agriculture. This study opens the door for autonomous flying, offering

increased competitiveness and consumer pleasure across many applications. However, the fact that a research

gap has been identified points to the necessity of an algorithm that can not only determine the paths of dynamic

obstacles effectively but also with minimal response time and energy consumption. The emphasis of our research

is on a new method, where GRU-based predictive model is used for the dynamic obstacle avoidance in AAVs. An

advantage of GRU over RNN is that it has many benefits. Architecture of this network enables gradient flow to
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be more efficient during training, making it possible to remove the vanishing gradient that is typical of standard

RNNs. This is a better choice in terms of computational resources because it needs fewer parameters than LSTM

and, hence, is more efficient and able to make predictions quicker. Our research outlines the major benefits of

the GRU model. On simulated tests, the GRU model shows better responses in time, energy consumption and

the computational load, outperforming the RNN and LSTM. It displayed extraordinary ability to anticipate the

trajectory of the AAV with foresight, this was done actively for the purpose of keeping security and efficiency in all

scenarios especially to those with high speed or dense obstacles. The development of the predictive model based

on the GRU architecture is the most important progress occurred in the discipline of AAV navigation. Moreover, by

resolving the fundamental issues associated with fast obstacle avoidance with a solution which considers all aspects

of speed, energy consumption, and computational demands, this analysis lays the foundation for a new generation

of more complex and trustworthy AAV systems. With the looming introduction of AAVs to various industries, the

importance of such innovations cannot be underestimated, they will surely hold the key not only now but also in

the future of autonomous flight.

The paper structure outlines as in section 2 a comprehensive literature survey covering recent developments in

UAV navigation, obstacle avoidance strategies, and GRU-based architectures. Following in section 3, showcases the

proposed methodology, including the design and simulation of the GRU-based predictive model within a dynamic

3D environment. Section 4 outlines the experimental setup and presents the evaluation metrics and results obtained

under various operational scenarios. Finally, Section 5 concludes the study by summarizing key findings, discussing

limitations, and proposing directions.

2. Literature Survey

This research aims to develop a process combining real-time data analysis with deep neural networks to

evaluate environmental conditions and structural integrity, such as assessing surface cracks in concrete structures.

By leveraging reinforcement learning mechanisms, the system enables task-specific path planning for UAV:

Unmanned Aerial Vehicle swarms in cluttered environments, such as delivering urgent payloads for firefighting.

Additionally, a futuristic architectural approach using a transformer-based system could enhance sensor failure

prediction, improving system robustness. Integrating UAV-USV cooperative control further enhances operational

efficiency across diverse terrains. Moreover, incorporating improvements to the Soft Actor-Critic (SAC) algorithm

sharpens UAVs’ real-time navigation responses. This research establishes a theoretical connection between UAV

models and their practical applications in civil, commercial, and environmental domains.

For instance, ElSayed, M., Foda, A., & Mohamed, M. (2024) examine the effects of civil airspace policies on

adopting autonomous unmanned aerial systems (AUAS) as a last-mile delivery solution. The study addresses regu

latory challenges and proposes policies to expand UAV applicability in commercial deliveries [4]. Their findings

include strategies for airspace management, traffic control, and the integration of UAVs into existing transportation

systems. Kim, B., et al. (2024) developed a hybrid system integrating deep neural networks and UAVs for real-time

assessment of surface cracks in concrete structures. This technology represents a breakthrough in infrastructure

maintenance, offering rapid and precise evaluations without human intervention [5]. Similarly, Puente-Castro, A.,

et al. (2024) proposed a Q-Learning-based system for UAV swarm path planning in obstacle-rich environments,

effectively preventing collisions among UAVs [6], [7].

Chen, J., et al. (2023) presented a deep multi-agent reinforcement learning framework, enabling autonomous

aerial navigation and precise load handling. These features are essential for logistics and rescue operations [8].

Bashir, N., et al. (2023) explored obstacle avoidance algorithms for UAV navigation in diverse environments

through simulation modeling, enhancing safety and efficiency [9]. T. Wakabayashi, et al. (2023) introduced an

optimization technique for dynamic obstacle avoidance in multi-rotor UAVs, incorporating instantaneous chance

constraints for enhanced navigation safety [10]. Guo, J., et al. (2023) investigated decentralized cooperative methods

for obstacle avoidance and formation reforms in UAV swarms, enabling complex missions [11]. Zhu, Y., et al.

(2024) examined UAV-USV formation control using adaptive zero dynamics-based event triggered mechanisms,

demonstrating efficient navigation in aerial and surface environments [12]. Stamatopoulos, M. N., et al. (2024)
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proposed a motion-planning algorithm for conflict free aerial 3D printing using multiple UAV systems, optimizing

collision prevention and process speed [13], [14].

A comprehensive review by Soori, M., et al. (2023) explored advancements in AI, ML, and DL for robotics,

providing insights into state-of-the-art algorithms and trends [15]. Backman, K., et al. (2023), investigated reinforce

ment learning mechanisms for shared-autonomy drone landings, highlighting the interplay between autonomous

algorithms and human inputs for safe operations [16]. Buchelt, A., et al. (2024) analyzed AI applications in UAV-

based forest management, showcasing their role in monitoring ecosystems and collecting data [17]. Ahmad, M.

W., et al. (2024) introduced a transformer-based approach for predicting and monitoring sensor failures in UAVs,

enhancing operational reliability and safety [18]. Lastly, Zhou, Y., et al. (2024) focused on graphical online path

planning for 3D UAVs using an improved SAC algorithm, enabling efficient real-time navigation in complex

environments. This survey underscores the interconnectedness between advanced machine learning techniques and

UAV applications.

In parallel, significant research has been directed toward the application of sequential deep learning models for

time-series prediction and analysis in UAV systems. Recurrent Neural Networks (RNNs), particularly Long Short-

Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures, have demonstrated strong capabilities in

modeling temporal dependencies within UAV sensor data, flight trajectories, and environmental monitoring tasks.

LSTM networks, with their memory cell structures and gating mechanisms, effectively capture long-term depen

dencies, and have been employed in applications such as autonomous navigation and infrastructure monitoring.

GRUs, a computationally efficient alternative to LSTMs, combine gating functions into a simpler architecture,

delivering comparable performance with reduced training time and fewer parameters—an advantage in real-time

UAV deployments where onboard resources is constrained. Recently, Transformer-based models have emerged as

powerful tools for time-series forecasting and anomaly detection due to their self-attention mechanisms and parallel

processing capabilities. Models such as Informer and the Time Series Transformer have shown promise in sensor

fault prediction and long-horizon forecasting [18]. However, the complexity and high data demands of Transformer

models pose practical limitations in embedded UAV environments.

The proposed research harmonizes real-time data analytics, autonomous navigation, and cooperative multi-

agent systems, forming the foundation for revolutionary UAV developments. Future work should focus on refining

algorithms to ensure the reliability and adaptability of UAV systems in diverse societal conditions. As automated

aerial technologies proliferate, investment in scalable and sustainable research is critical to shaping a robust and

innovative future.

3. Methodology

This research focuses on the design, construction, and evaluation of a GRU-based forecasting model through

a structured and scientifically rigorous approach. The primary goal is to enhance autonomous aerial vehicles with

dynamic obstacle avoidance capabilities. The study outlines a systematic methodology for model deployment and

performance assessment, simulating realistic aviation and navigational training scenarios during the initial phases

of development. Simulations include real life scenarios that require for the participants to move tactfully. Weather,

geography, and obstacles, varying from poor visibility to various size and shapes, are simulated in our simulation

environment. Before plunge into a deployment, these events can be simulated for checking prediction model. Once

the simulation is complete (GRU-based predictive model building and training), RNNs can be used in tasks related to

temporal modeling, such as obstacle avoidance in dynamic environments, because they can record connections that

have once been fed. GRU model architecture-layers, hidden units, and even the input parameters, will be tweaked

during design for better job performance.

The model is fed historical data and simulated scenarios to develop an understanding of the complex interplay

between input parameters and optimal navigation decisions. Model parameters are sharpened using iterative training

that uses SGD (stochastic gradient descent) or Adam optimization. Regularization and dropout can decrease

overfitting and improve the generalization quotient. Expanding the training data sensitizes the model to more events
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Fig. 2: Methodology from sensor input to decision.

which strengthens its robustness and yields more reliable results. Dynamic obstacle avoidance training and testing

is done via a multitude of simulated environments after the GRU model is trained. This process of evaluation

entails acquisition of unseen data alerts the model and using ground truth labels or expert assessment to compare

prediction. Compute accuracy, precision, recalls and F1-score metrics to assess the performance of the model in

different circumstances. Qualitative analysis beyond quantitative assessment is used for checking how the model

makes decisions and what changes are required. Heatmaps and/or trajectory plots may show model behavior and/

or failure mode and/or boundary identification. This study starts with the long and painstaking development of

a replica of a 3D environment which looks like the flying environment of AAV. This virtual environment is the

best place for experimenting on AAV navigational techniques in the dynamic and challenging environments. Fig.

2 shows the outline from sensor input to decision making.

The first stage is the creation of a simulated world capable of emulating the complexity and nuances of the

real world. This consists of recognizing the geography, weather, and the environment which will be an issue to the

AAVs when in operation. AAVs travel urban or Natural worlds, therefore static obstacles like buildings, trees, and

terrain forms are artificially placed in the virtual scene. Realistic settings that include barriers, such as slanted roads,

really contribute to the increased realism. These live features change, for instance when they are similar to moving

objects that could lead to the change of AAV’s course and its behavior, bringing more challenges. The dynamic

barrios feature airplanes, birds, and other mobile objects in an airspace with simulated conditions.

This simulation is stochastic and chaotic because variables are changing in a realistic fashion as in real life

where airborne vehicles share the sky with many other moving objects. The dynamical ways of these barriers are

also intricately constructed to imitate real-life actions. It may be difficult to fully mimic aerial takeoff, landing, or

mid-air maneuvers with UAVs, whereas birds could have a swarm or forage. These unexpected and dynamic factors

make the simulated environment an uncompromisingly harsh environment where the true grit of the navigational

algorithms is tested in fast-changing and uncertain conditions. It is an integrated 3D environment that faithfully

mimics the real world in order to provide an environment for reliably running the navigation algorithms.

This complete simulation technique enables researchers to manipulate and reproduce sets of stimuli, sensors

and aids and the limitations of the AAV’s navigation system which is a stepping stone in building and validating

models. The 3D map in Fig. 3 simulates the environment for autonomous aerial vehicle navigation testing. This

environment simulates real-world settings with static and dynamic obstacles: Static Obstacles (Red Dots) with

buildings, trees and other fixed objects in the map. Much like a typical terrain that a land vehicle faces, the airspace

is also characterized by varying x, y, and z placements. The blue dotted lines represent moving obstacles (birds and

other airborne vehicles). These obstacles, adhering to the predetermined paths (lines), produce the unpredictable

outcome causing the network to navigate unexpectedly. The Aerial course [Green Line] shows the vehicle traversed

a shorter path through the surroundings. The drone performs spatial and altitude modifications to avoid obstacles,

as expressed in its sinusoidal y- x pattern and the increase in altitude (z).

The Fig.3 illustrates a research-based 3D simulated environment setting up, and it reveals the methodology

part. It demonstrates the difficulty to keep the environment model up-to-date when it is observing changes in the
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Fig. 3: 3D Simulation Environment with Static and Dynamic Obstacles.

static and dynamic boundaries hence, the necessity for strong predictive models such as GRU-based ones as they

help to avoid the obstacles. Our research technique models using GRU-based neural networks. GRUs, i.e., the class

of advanced RNNs are supposed to handle and forecast time series data. This thus makes them the advisable option

needed for forecasting dynamic obstacle placement, which is an important factor for dynamic obstacle avoidance

of unmanned aerial vehicles. GRUs can be more precise in predicting future happenings as the information flows

in the unit from the beginning and is constantly updated over the previous data. The mathematical fundamentals of

GRU model are codified in a set of equations that are essential for the proper function of the model.

The GRU is a transformer with update and reset gates that play an important role in modulation of information

flowing across the network. The adaptation gate (zt) is a key constituent that dictates the amount of information

that is inherited from the previous state (ℎ𝑡−1) to the current state. It portrayed mathematically as in (1). The first

hidden layer, in which σ stands for the sigmoid function, guarantees the final results to be between 0 and 1. Such a

gaging method helps the model to select the necessary historical data for the needs of the model, making it memory

more effective. The GRU model’s mathematical formulation is given by Zhang et al., 2023 as follows

𝑧𝑡 = 𝜎(𝑊𝑧.[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧) (1)

At the same time, reset gate, which is (rt), is a crucial element in selecting the amount of past information to be

kept or forgotten. They disclose it in the form of equation defined in (2), representing the data as a series of states,

thus allowing the memory to filter the redundant information from the previous state, hence making it more focused

on the relevant information.

𝑟𝑡 = 𝜎(𝑊𝑟.[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟) (2)

Starting the update of the hidden state from the update gate and the reset gate, the candidate hidden state (ℎ

ℎ̃𝑡)is computed. This is an implicated new memory state generated by combining new input data and biasing by

reset gate. The governing equation of this process is (3), where tanh is the hyperbolic tangent function, guarantees

normalization between −1 and 1. This phase, however, goes by the process of refreshing the model’s memory with

new and important data along with the reset gate that determines the importance of old data.

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊.[𝑟𝑡.ℎ𝑡−1, 𝑥𝑡] + 𝑏) (3)

Finally, the final hidden state (ℎ𝑡) is derived by melding the old state (ℎ𝑡−1) and the newly proposed state (ℎ

ℎ̃𝑡) in proportions dictated by the update gate. Equation defined in (4) elegantly captures this process, showcasing

the GRU’s ability to dynamically balance between retaining valuable historical information and incorporating fresh

insights.
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ℎ𝑡 = (1 − 𝑧𝑡) × ℎ𝑡−1 + 𝑧𝑡 × ℎ̃𝑡 (4)

The GRU model’s parameters, including the weights (W, Wz, Wr) and biases (b, bz, br), are iteratively learned

during the training phase. Offset backpropagation and the Adam optimization, drive training by minimizing a

specific loss function. The loss for this process could be the mean square error (MSE) between the anticipated

obstacle locations and the ones that already exist. The simulated flights are information on sensors, locations of

the obstacles, and vehicle telemetry for the GRU model training. The model uses this information to guess the

obstacle paths and to change the course of the vehicle to avoid a collision. Adam optimization, achieving a minimum

of a loss function, which is almost always is MSE, between the predicted and the actual obstacle locations, is a

typical training example. As shown in Fig. 4, there is Basic Dynamic Obstacle Avoidance algorithm. The itinerary

of the aerial vehicle is shown as a connecting sequence points showing the programming of the following issues.

The under-vehicle’s location (dashed line) is plotted at each point when obstructions are detected (black crosses).

The white star is a symbol of the aim. The aerial vehicle’s route is linear and deviations which are proportional

to the displacement of obstacles can be readily observed in its flight path. This approach demonstrates a reactive

technique where decisions are made after problems have surfaced, not regulated through projections. Refer to Fig.

5 for a GRU-Based Predictive Dynamic Obstacle Avoidance Model. Even though the vehicle motion looks more

like points movement, its trajectory is smoother and much more subtle. Those challenges in the first figure can also

suggest a uniform test environment as well. But this method implies preemptive adaptations as it makes the vehicle’s

movement are smoother and it rarely makes unexpected turns and sidings like when using the basic technique. This

demonstrates the addition of GRU-based predictive modeling, which is an ability to project obstacles in the dynamic

pathway that the vehicle can evolve its trajectory to ensure the best path to approach the red target. The two plots

demonstrate the performance of the reactive simple form and the predictive sophisticated one in the scenario of

dynamic obstacle avoidance. From the smoother trajectory, the GRU-based model’s higher route efficiency suggests

a deeper grasp of the environment and shows how recurrent neural networks may improve autonomous navigation

systems.

Fig. 4: Basic Dynamic Obstacle Avoidance. Fig. 5: GRU-based Dynamic Obstacle Avoidance

In Algorithm 1, σ represents the sigmoid activation function, tanh is the hyperbolic tangent activation function,

and ⊙ denotes the Hadamard product (element-wise multiplication). W, Wz, Wr, U, Uz, Ur, b, bz, br are the trainable

parameters of the GRU model. ℎ𝑡−1 is the hidden state from the previous timestep, and ℎ𝑡 is the current hidden

state. This begins with the instantiation phase of the GRU predictive modeling neural network algorithm, where
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Algorithm 1: GRU-Based Predictive Modeling For Dynamic Obstacle Avoidance

1 Input: Initial state 𝑠0, target position

2 Output: Sequence of actions leading to the target or collision record

3 for each episode in simulation do

4 Initialize GRU weights 𝑊,𝑊𝑧,𝑊𝑟, 𝑈, 𝑈𝑧, 𝑈𝑟, 𝑏, 𝑏𝑧, 𝑏𝑟 with random values

5 Initialize state 𝑠 ← 𝑠0
6 Initialize hidden state ℎ0 ← 0

7 while 𝑠 is not at target do

8 Obtain sensor readings 𝑅

9 Pre-process sensor data: 𝑥𝑡 ← 𝑃𝑟𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑅)

10 Compute update gate: 𝑧𝑡 ← 𝜎(𝑊𝑧 ⋅ 𝑥𝑡 + 𝑈𝑧 ⋅ ℎ𝑡−1 + 𝑏𝑧)

11 Compute reset gate: 𝑟𝑡 ← 𝜎(𝑊𝑟 ⋅ 𝑥𝑡 + 𝑈𝑟 ⋅ ℎ𝑡−1 + 𝑏𝑟)

12 Compute candidate hidden state: ℎ′
𝑡 ← 𝑡𝑎𝑛ℎ(𝑊 ⋅ 𝑥𝑡 + 𝑈 ⋅ (𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏)

13 Update hidden state: ℎ𝑡 ← (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ′
𝑡

14 Decode ℎ𝑡 to get obstacle predictions

15 Plan next action: 𝑎𝑐𝑡𝑖𝑜𝑛 ← 𝑃𝑙𝑎𝑛𝑃𝑎𝑡ℎ(𝑠, 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

16 Execute action: 𝑠 ← 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝐴𝑐𝑡𝑖𝑜𝑛(𝑠, 𝑎𝑐𝑡𝑖𝑜𝑛)

17 if 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑(𝑠) then

18 Record collision

19 break

20 end

21 end

22 Update GRU weights based on experience

23 end

the parameters are randomly initialized. When simulation starts for each episode, the vehicle denoted by the state

going as s is set to its starting co-ordinates. The vehicle moves into the loop and now starts scanning, checking and

reassessing its navigation in order to reach the target location as fast as possible.

In each iteration, sensor data collection and preprocessing are done followed by the transformation of the

unstructured data into a structured input vector xt. With this vector, the GRU updated the target gate 𝑧𝑡 and the reset

gate 𝑟𝑡 based on the previous state ℎ𝑡−1. These gates are very crucially operating on the assumption of information

flow by deciding what needs to be retained or discarded from memory. This is then followed by computing ℎ′
𝑡,

the candidate hidden state, a new memory state that combines the new input with the past information depending

on the new input. The final hidden state ℎ𝑡 is then derived by interpolating the ratio between the old state and the

candidate state with the updater gate, thus gradual memory update. Using the current hidden state, the model can

predict the absolute position of the obstacle thus, sent forward for the next action planning or movement direction.

The car reaction is a transition into a new state. In case of any collision that occurs while the move is in this position

is recorded. So the episode is terminated. At the end of every episode, the model learns new information (weights)

via backpropagation and optimization algorithms, bettering its chances of successive predictions. The GRU model

can learn and improve from its mistakes iteratively, and therefore, the model can correct itself by responding to the

obstacles and avoiding them dynamically and safely.
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4. Research Evaluations

The experimental setup insights a cautionary look at the effectiveness of GRU through a simulated test bed

with high likeness to real-life AAV situations. In The environment we have structures developed as buildings and

natural elements as trees, as well as moving elements like other aerial vehicles and birds, all these elements added

unpredictability to the environment. The datasets captured in the time-series manner from the simulated sensor

networks that mimic the sensors of an aerial vehicle was used to track these obstacles through time. This data

was applied for the GRU model training that was used to predict obstacle locations and assess its capability to

dynamically create avoidance paths that were valid in simulations. The GRU predictor provided an airspace picture

of the flight path obstacles based on the information gathered using sensor data. The model was evaluated based

on its capability to prevent collisions, reduce the amount of computational load, and be on track to guide without

steering away from the object. Its efficacy became apparent looking at the results from the simulations. Fig. 6

depicts the Training and Validation Loss with Respect to Epochs curve, that shows reduced training loss with time,

as a model training result which indicates learning and model fitting. The training data could probably experience

overfitting as the validation loss went up. This finding brings into question the complexity and effectiveness of the

regularize in improving generalization. Fig. 7 provides the model’s discriminative ability on safe and risky flight

trajectories, which is illustrated by the ROC Curve.

The performance metric AUC equals 0.53, which is very close to the trial-and-error case, implying that the

model should be trained on more data or some parameters should be readjusted. The above Time-Series Predictions

of Obstacle Position figure in Fig. 8 gives an illustration that the model could simulate dynamic obstacle positions.

According to the results in the previous timesteps, the calculated positions were similar to the actual positions,

indicating the GRU model is potentially able to make accurate short-term predictions. As time goes on, divergence

between forecasts and simulations is noticed, which could be caused by the complexity of long-term dynamic system

predictions. The experiments were made in that prearranged condition, which was meant to analyze the model’s

performance under the different conditions. Fig. 8 provides an aggregated view of the model’s effectiveness across

different operational scenarios: low-speed, medium-speed, high-speed, dense-speed and various types of weather.

The performance metrics, for example accuracy, precision, recall and F1 scores, are represented as bars, the heights

of which correspond to the values of metrics for each scenario.

Fig. 6: Training and Validation Loss over Epochs. Fig. 7: RoC Curve.

Fig. 9 illustrates that the model achieves its highest accuracy and precision in low-speed conditions, where the

vehicle has ample time to react to the obstacles. The recall metric is standing high in every condition, which may

infer that the model is successfully in recognizing obstacles in its way. Although, the F1 score which is comprised

from harmonic mean of precision and recall is the maximum at low-speed and the different weather conditions.

Consequently, the Table 1 indicates a balanced performance in this range. These metrics combined serve as an

example of the ability of the model to solve different environmental problems and stay reliable in detecting and
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Fig. 8: Time Series Prediction of Obstacle Position.

Fig. 9: Performance Metrics over Varying Conditions.

avoiding obstacles concurrently. Whereas Fig. 10, charts the trajectory of model accuracy over the training epochs

for three different neural network architectures: GRU, LSTM, and RNN are all employed. Notably, the GRU model

shows a steady rise in accuracy with each epoch unlike the LSTM and RNN that tends to oscillate around the mean

accuracy, showing its higher aptitude to capture temporal dependencies in obstacle prediction. The RNN model,

at first, exhibited a good performance but roughly at a later stage, significant decrease in accuracy was observed,

possibly due to vanishing gradient or overfitting.

An explanation of metric formulas is given in Table 2. Based on experimental results that were analyzed

numerically, it can be concluded that the GRU-based predictive model is capable of performing differently in a

variety of scenarios in the terrain of an autonomous aerial vehicle as shown in Table 3. Among all conditions, the

response time in the low-speed scenarios is 0.35 seconds which is the shortest and depicts the model’s capability

of processing information and efficiently making decisions without being influenced by the stressful movement.

The scenario that demonstrates the lowest energy intake at 100 units and the shortest path length at 140 units is also

very competitive implying that slowness enables effective decision making and conserves resource expenditures.

With the advancement of the vehicle’s speed from medium to extreme, there will be an increase in the response

time to 0.45 seconds, and the energy consumption will rise to 115 units, indicating a need for more complex

processing of data, due to increased speed. Still, the path efficiency is still quite high at 125 (units), implying that the

model performs fairly well in the sentinels’ navigation process. The five-second high-speed demonstration put an

additional burden on the model, where the response time was measured as 0.55 seconds and the energy consumption

reached 130 units. The route efficiency is around 115 units less compared to the slow-motion one, maybe because

at the rapid velocity moments of adjustment are much more needed.
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Table 1: Performance Metrics.

Condition Model Accuracy Precision Recall F1 Score

GRU 0.95 0.85 0.80 0.82

LSTM 0.93 0.82 0.78 0.80

Low Speed

RNN 0.88 0.78 0.75 0.76

GRU 0.85 0.80 0.75 0.77

LSTM 0.82 0.76 0.72 0.74

Medium Speed

RNN 0.78 0.72 0.70 0.71

GRU 0.80 0.75 0.70 0.72

LSTM 0.76 0.70 0.68 0.69

High Speed

RNN 0.70 0.65 0.62 0.63

GRU 0.75 0.70 0.65 0.67

LSTM 0.72 0.68 0.63 0.65

High Density

RNN 0.68 0.62 0.60 0.61

Fig. 10: Model Accuracy over Epochs.

Table 2: Mathematical expressions to obtain all parameters.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇 𝑖𝑚𝑒 (𝑠) = 𝑡𝑑𝑒𝑠𝑖𝑐𝑖𝑜𝑛 − 𝑡𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦(𝑢𝑛𝑖𝑡𝑠) = ∫𝑡𝑓
𝑡0

𝑃(𝑡)𝑑𝑡

𝑃𝑎𝑡ℎ 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ .𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐿𝑜𝑎𝑑 = ∑𝑛

𝑖=1
(𝐹𝐿𝑂𝑃𝑆𝑖 +𝑀𝑒𝑚𝑚𝑜𝑟𝑦𝑖 +

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇 𝑖𝑚𝑒𝑖)

In situations where tight obstacles prevail, the method takes the longest response time of 0.60 seconds signi

fying that navigating through a jammed space causes the most time delay. But the consumption of energy even

reduces to 120 units, and path efficacy is always preserved at 135 units, pointing out the model flexibility in the

task environment. Therefore, continuously changing weather conditions, including storms, which impact sensors’

precision, result in a reaction time of 0.50 seconds—moderately more than in low-speed situations. Energy drops to

110 units, while path efficiency rises to 130 units thus implying the capability of the approach to efficiently handle

sensory variations with no impact on navigation.

The load conditions differ between 290 and 320 units across all scenarios, the highest load is observed in

high-speed scenario, thus stressing the raised computational complexity for the fast movements. In the case of
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Table 3: Performance Metrics Over Various Parameters.

Condition Model Response Time

(Seconds)

Energy

Consumption

(Units)

Path Efficiency

(Units)

Computational

Loads (Units)

GRU 0.35 100 140 300

LSTM 0.38 105 135 305

Low Speed

RNN 0.40 110 130 310

GRU 0.45 115 125 310

LSTM 0.48 120 120 315

Medium Speed

RNN 0.50 125 115 320

GRU 0.55 130 115 320

LSTM 0.58 135 110 325

High Speed

RNN 0.60 140 105 330

GRU 0.60 120 135 305

LSTM 0.62 125 130 310

High Density

RNN 0.65 130 125 315

Fig. 11: Performance Metrics Across Different Scenarios.

weather conditions with varying characteristics the least computational load is observed, which could be the model’s

attempt to minimize the computation effort and counteract possible sensor noise. The numerical analysis as shown

in Fig. 11 shows that the GRU-based model can keep the work, response time, energy consumption, path efficiency,

and computational load in balance which indicates the feasibility of application within the time-critical real-time

operational frameworks in different operational settings.

The GRU network used in this study comprises two hidden layers, each with 128 hidden units and ReLU

activation functions applied between layers. To mitigate overfitting, a dropout rate of 0.3 was applied after each

GRU layer. The model was trained using the Adam optimizer with a learning rate of 0.001, a batch size of 64,

and for 50 training epochs. The binary cross-entropy loss function was used to train the network to classify flight

paths as safe or risky, and time-series prediction loss was handled with mean squared error (MSE) during training

for obstacle tracking. The dataset was split into 80% for training and 20% for validation, and early stopping was

implemented with a patience of 5 epochs to avoid overfitting.

5. Conclusion

Despite promising results, the GRU model’s performance was validated only in simulated environments,

limiting real-world applicability. Its computational load, ranging from 290 to 320 units, may challenge deployment

on lightweight UAV systems. The model showed reduced precision in high-speed or dense obstacle scenarios.

Overfitting risks were observed during training, indicating limited generalization. Lastly, the absence of multi-
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agent coordination restricts its use in collaborative UAV operations. “GRU-Based Predictive Modeling for Dynamic

Obstacle Avoidance in Autonomous Aerial Vehicles” presents the result of testing based on rigorous testing and

numerical analysis which GRU-based model represents a better navigation. The quick reaction obligations, low

energy levels, logical path-finding pathways and the affordable computing loads that this model simulate in alterna

tive situations like the operating ones are what makes them work well. In a numerical way such model - GRU-based

exceeds the RNN- and LSTM-based models in terms of the reaction time, especially in a low-speed settings where

the algorithm reacts in 0.35 seconds and in a higher speed setting – takes less than 0.6 seconds to react. The model

can be customized and is fit for environmental changes. The model energy economy peaks in 130 units at high-speed

mode and then declines by 10 units in variability of weather conditions, such power management of this model is

even in demanding sensory circumstances. The model’s route effectiveness measurements reveal that the length of

the trip stays unchanged and robust through various situations, hence cutting back travel time and speeding arrival

to destination meeting expectations. The only point is that the GRU model needs 290 to 320 units of computing that

is able to be running onboard controllable aerial vehicle system. By using this prediction model, it is possible to see

how robust and reliable the GRU-based predictive model is in dynamic Environment obstacle avoidance, which is

a great step forward for its use in autonomous aerial vehicles. The model could significantly benefit organizations

that require operational safety and efficiency, featuring the advantages of quick reaction time and the correct

allocation of resources. Our plans for the future are driven by progression. Use of real-world data and simulation of

the model under different living environmental conditions may enhance predicted accuracy. Additionally, studying

dynamic model adaption to unforeseeable obstacles or environments is an approach to increase model’s flexibility.

Moving on, the addition of these multi-agent situations and cyclical avoidance approaches will further the Robotic

navigation. Thus, the research provides an advanced basis for new genres of sophisticated, smart, and autonomous

air vehicles (UAV’s) that will command huge autonomy and safety through automation.
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