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ABSTRACT

This paper proposes a novel Dual-Network Time Series Forecasting Model that integrates a fast learner based on

iTransformer with a slow learner for long-range context aggregation. The fast learner captures high-frequency local patterns

efficiently, while the slow learner encodes broader temporal dependencies to improve robustness against noisy and non-

stationary data. The model is evaluated across four benchmark datasets: Electricity Transformer Temperature (ETT), Exchange

Rate, Weather, and Influenza-like Illness (ILI). Experiments are conducted on forecasting horizons ranging from 96 to 720

steps ahead. Performance is assessed using Mean Absolute Error (MAE) and Mean Squared Error (MSE), with the proposed

model achieving state-of-the-art results, particularly on long-term forecasting tasks. Ablation studies and t-tests confirm the

statistical significance and robustness of the dual-network design.

Keywords: Long-term time series forecasting, DualNet transformer, frequency-domain representation, inter-series dependen

cies

1. Introduction

Time-series forecasting is a crucial process across various domains, including economics, healthcare, and

meteorology, where accurate and timely predictions are essential for informed decision-making. As data volume

and complexity increase, the demand for efficient and effective forecasting methods becomes more pressing [1].

Researchers have developed numerous approaches to address this challenge, ranging from classical statistical

methods, such as ARIMA, to advanced machine learning and deep learning models [2], [3]. These modern

approaches are increasingly evaluated for their ability to outperform traditional techniques, particularly in capturing

nonlinearities, long-term dependencies, and multi-scale patterns in real-world datasets.

Several algorithms have demonstrated effectiveness in time-series forecasting, including the Online Sequential

Extreme Learning Machine (OS-ELM) [4], Online Recurrent Extreme Learning Machine (OR-ELM) [5], and the

Inverted Transformer (iTransformer) [6]. OS-ELM is designed for high-speed online learning, enabling models to

adapt to new data without retraining from scratch. Its advantage lies in its ability to process incoming data sequen

tially, making it highly suitable for real-time forecasting applications that require rapid responses to data changes.

Conversely, OR-ELM integrates recurrent components into the Extreme Learning Machine (ELM) framework,

allowing it to capture temporal dependencies in time-series data. This capability is particularly beneficial for

handling long-term dependencies commonly found in sequential data [5]. Building upon this, the Recurrent Extreme

Learning Machine (Recurrent-ELM) introduces self-recurrent connections within the hidden layer, enhancing its

ability to model temporal patterns in online process regression tasks [7]. Meanwhile, iTransformer adopts a novel

approach by reversing the traditional Transformer architecture, treating the entire time series as a single token.
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This design improves model interpretability and facilitates the processing of complex multivariate information

[6]. Further advancing Transformer architectures, the Time-Transformer AAE integrates Temporal Convolutional

Networks and Transformers in a parallel design, effectively capturing both local and global features in time-series

data and demonstrating superior performance in generating realistic synthetic sequences [8].

Despite the advancements in forecasting methods, significant challenges remain, particularly in handling non-

stationary data, intricate seasonal patterns, and dynamic external factors. Research has shown that deep learning

models, such as Transformers, have become a new standard in forecasting due to their superior ability to capture

long-range dependencies compared to conventional methods [9], [10]. However, traditional Transformer architec

tures demand substantial computational resources and may be inefficient for high-frequency time-series data or

datasets with multiple variables. Consequently, developing more efficient architectures, such as iTransformer and

hybrid methods, is essential to enhance predictive accuracy while maintaining computational efficiency [6].

Recent approaches have focused on enhancing robustness to non-stationary data. For instance, Non-stationary

Transformer (NST) integrates series stationarization and de-stationary attention mechanisms to better handle

temporal shifts in data distributions [11]. Similarly, Spacetimeformer reformulates multivariate forecasting as a

spatiotemporal sequence modeling task, enabling the Transformer to effectively capture both temporal and spatial

dependencies [12]. Comprehensive reviews have also highlighted persistent challenges in deep learning-based time-

series forecasting, particularly regarding seasonality, scale, and interpretability [13].

Studies have shown that time-series forecasting models are often vulnerable to noise introduced by sensor

faults, outliers, or environmental variations, which can significantly degrade performance [14], [15]. To address

this, recent work has proposed noise-resilient approaches, including curriculum learning with Transformers [14]

and decomposition-based techniques for separating signal from noise components [15]. Despite these advances,

integrating robust noise handling into lightweight and interpretable forecasting architectures remains an ongoing

challenge. Thus, there is a need for approaches that not only improve forecast accuracy and efficiency but also

ensure resilience against noise and data inconsistencies.

Moreover, as technology advances and the demand for more precise forecasts increases, research in time-series

forecasting continues to evolve. Various deep learning-based approaches, such as long-short-term memory (LSTM)

and temporal convolutional networks (TCN), have shown strong capabilities in capturing complex temporal

patterns [16], [17]. Recent studies have explored architectural innovations, including graph neural networks and

hybrid models, to address the limitations of traditional methods [13], [18]. However, challenges persist in terms of

model interpretability and computational efficiency, particularly for real-time applications. Thus, there is a need for

approaches that not only improve forecast accuracy but also enhance efficiency in both training and inference.

In this study, we propose the Dual-Net iTransformer, a model that combines the strengths of iTransformer

with a dual-network approach to enhance accuracy and efficiency in time-series forecasting. Dual-Net iTransformer

is expected to outperform existing methods, including OS-ELM, OR-ELM, and iTransformer, while addressing

their limitations. Through this research, we aim to provide deeper insights into the effectiveness of these methods

and demonstrate the contributions of Dual-Net iTransformer in improving time-series forecasting performance.

The remainder of this paper is organized as follows. Section 2 reviews the related works that form the

foundation of our approach. Section 3 presents our methodology, detailing the proposed framework and technical

implementation. Section 4 describes our experimental setup and presents the results of our evaluation. Section 5

provides a discussion of the findings, their implications, and limitations of the current work. Finally, Section 6

concludes the paper with a summary of contributions and outlines directions for future research.

2. Related Works

Time-series forecasting has been extensively studied using various machine learning and deep learning

approaches. Traditional statistical models such as ARIMA [1] and exponential smoothing remain widely used

but struggle to capture long-term dependencies and nonlinear patterns in complex datasets. With the rise of deep
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learning, recurrent neural networks (RNNs)—particularly Long Short-Term Memory (LSTM) networks [16]—have

gained popularity due to their ability to retain information across extended sequences. However, LSTMs often suffer

from vanishing gradients and computational inefficiencies when handling large-scale time-series data [17].

To address these challenges, the Extreme Learning Machine (ELM) framework emerged as a fast and effi

cient alternative to conventional neural networks. ELM is a single hidden-layer feed forward neural network (SLFN)

that has gained significant attention due to its rapid training speed, ease of implementation, and minimal human

intervention [4], [5]. ELM-based techniques have been applied across multiple domains, including classification,

regression, and feature learning, and have demonstrated promising results in fault detection and adaptive control

tasks. Recent advancements include the integration of knowledge augmentation in Deep ELM for EEG seizure

prediction, significantly improving accuracy and interpretability in biomedical signals [19]. Additionally, novel

hardware implementations such as photonic ELM using microresonator arrays have been proposed to accelerate

ELM processing for optical computing applications [20]. On the algorithmic front, ELM Ridge Regression Boosting

has been introduced to enhance the robustness and predictive performance of ELM-based models in noisy or

complex environments [21].

Building on this foundation, Online Sequential Extreme Learning Machine (OS-ELM) was introduced to

enable sequential learning without requiring complete retraining, making it highly suitable for real-time forecasting

applications [4]. Further, recurrent variants of ELM integrate feedback connections to enhance the modeling of long-

term dependencies in streaming data [5]. These models offer significant computational advantages over traditional

deep learning architectures, especially in scenarios that require continuous adaptation to dynamic environments.

However, they struggle to capture complex multivariate interactions and long-range dependencies.

To overcome these limitations, researchers have explored Transformer-based architectures for time-series

forecasting. [9] introduced efficient attention approximations, which build on the original Transformer concept and

improve scalability for sequence modeling. Building on this, [22] and [23] proposed Informer and Autoformer,

which optimize Transformers by reducing computational complexity and improving long-term forecast accuracy.

Furthermore, [6] introduced iTransformer, which restructures the traditional Transformer by treating the entire

time series as a single token, enhancing interpretability and computational efficiency. These studies underscore

the increasing adoption of attention-based architectures for handling long-range dependencies in time-series fore

casting.

Another emerging direction in time-series forecasting involves hybrid and adaptive models. [10] introduced

Temporal Fusion Transformers (TFT), which integrate static and dynamic features to enhance interpretability in

multivariate forecasting tasks. Similarly, SCINet [24] leverages sample convolution and interaction mechanisms to

effectively capture temporal dependencies. Meanwhile, [25] developed N-BEATS, a deep neural network designed

for interpretable time-series forecasting, demonstrating superior performance over conventional and RNN-based

methods. Additionally, [26] introduced a meta-learning-based Transformer network for dynamic long-term fore

casting, highlighting the potential of adaptive architectures in addressing time-series challenges.

Beyond architectural innovations, recent research has integrated probabilistic forecasting and meta-learning

to improve forecasting reliability. [27] proposed DeepAR, an autoregressive recurrent network designed for

probabilistic forecasting, allowing for more reliable uncertainty quantification. [28] developed a Transformer-based

encoding approach for long-term forecasting, demonstrating improved generalization across multiple datasets.

Additionally, [29] introduced DualNet, a continual learning framework that balances short-term adaptability with

long-term memory retention, offering insights into lifelong learning in time-series models.

These advancements in deep learning, Transformer-based architectures, and extreme learning machines have

significantly enhanced time-series forecasting accuracy and adaptability. However, challenges remain in balancing

computational efficiency, interpretability, and scalability across different forecasting horizons. Future research must

continue refining these methods to optimize performance while ensuring real-world applicability.
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Fig. 1: Dual-Network iTransformer Universal Representation Transformer (URT) Architecture

3. Methodology

This research aims to develop Dual-Net iTransformer with Universal Representation Transformer (URT) [30],

a time-series forecasting model that integrates two iTransformer architectures within a dual-network framework

(Fig. 1). The proposed model comprises two primary components: Fast-learning iTransformer – Optimized for

capturing short-term patterns in time-series data, Slow-learning iTransformer – Focused on long-term dependencies

while effectively mitigating noise. To enhance forecasting accuracy and adaptability, these two components are

combined using a URT, which generates more precise and robust final predictions by leveraging the complementary

strengths of both networks. The notations and definitions of all variables used in the proposed Dual-Net iTrans

former method are summarized in  Table 1 for reference and clarity.

Each iTransformer model, both for the fast learners ( 1
𝑀 ∑𝑀

𝑖=1 𝑓𝜃𝑖(.)) and slow learners (𝑔{𝜃}(.)), operates

through four main stages. The first stage is embedding (implemented by function 𝑓𝑒𝑚𝑏𝑒𝑑), where each variable in

the time series is transformed into tokens through an embedding layer, facilitating structured representation for

subsequent processing as seen in (1).

𝑋𝑡 =
1
𝑀

∑
𝑀

𝑖=1
𝑓𝜃𝑖(𝑋) (1)

𝑋𝑡 represents the input data at time 𝑡. The second stage is the Multivariate Attention Layer, which captures

relationships between variables using a self-attention mechanism as seen in (2).

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑄 𝐾𝑇

√𝑑𝑘
)𝑉 (2)

𝑄,𝐾, 𝑉  are the query, key, and value representations of the variables, and 𝑑𝑘 is the key dimension. The third

stage is the Feed-Forward Layer, which produces higher-level representations using a nonlinear activation function

as seen in (3).

𝑓𝑓𝑓(𝑥) = 𝑅𝑒𝐿𝑈(𝑊1𝑥 + 𝑏1)𝑊2 + 𝑏2 (3)

𝑊1,𝑊2 are weights and 𝑏1, 𝑏2 are biases. The final stage is Layer Normalization, which normalizes feature

scales and improves training stability as seen in (4).

𝑥 = 𝑥 − 𝜇
𝜎

(4)

𝜇 and 𝜎 are the mean and standard deviation of the features.
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Table 1: Variable Notations Used in Dual-Net iTransformer Method

Variable Notation Explanation

𝑋𝑡 Input time-series data at time 𝑡

𝑓𝜃𝑖(.) Fast learner model function for the 𝑖-th learner

𝑔𝜃(.) Slow learner model function

𝑓𝑒𝑚𝑏𝑒𝑑 Embedding function that converts time-series values into token representations

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) Self-attention mechanism using query, key, and value representations

𝑄,𝐾, 𝑉 Query, key, and value matrices in attention

𝑑𝑘 Dimensionality of the key vectors

𝑓𝑓𝑓(𝑥) Feed-forward transformation with ReLU activation

𝑊1,𝑊2 Weight matrices in the feed-forward layer

𝑏1, 𝑏2 Bias vectors in the feed-forward layer

𝜇, 𝜎 Mean and standard deviation used for normalization

𝑋̃ Masked input data

𝑀 Binary mask tensor or number of fast learners (context-dependent)

𝐿𝑚 Loss for masked data

𝐿𝑢𝑚 Loss for unmasked data

𝐿𝑠𝑙𝑜𝑤 Total reconstruction loss for the slow learner

𝜆 Trade-off parameter between masked and unmasked loss

𝑅 Aggregated representation from all fast learners

𝑊𝑞,𝑊𝑘 Weight matrices for query and key transformation

𝑏𝑞, 𝑏𝑘 Bias vectors for query and key transformation

𝐴 Attention weights computed via scaled dot-product attention

𝑌 Final prediction computed from attention-weighted fast learner outputs

𝑀𝑆𝐸 Mean Squared Error, used as performance metric

𝑀𝐴𝐸 Mean Absolute Error, used as performance metric

𝑁 Total number of data points or prediction instances

𝑦𝑖, 𝑦𝑖 True and predicted values for the 𝑖-th instance

Dual-Net iTransformer URT differs from traditional Dual-Net models used in continual learning. In this

research, the fast learner captures local patterns from different segments of the time series, while the slow learner

captures global information and mitigates overfitting. To enhance the robustness of the model against noise, a

Controlled Reconstruction Strategy is implemented, consisting of several steps. First, part of the data is randomly

masked before being processed by the slow learner as seen in (5).

𝑋̃ = 𝑋 ⊙𝑀 (5)

𝑀  is a binary mask tensor containing values of 0 or 1. Second, the loss is computed as a combination of

masked and unmasked data as seen in (6) and (7).

𝐿𝑚 = 1
𝑁

∑
𝑁

𝑖=1
(𝑋̂𝑚,𝑖 −𝑋𝑚,𝑖)

2
(6)

𝐿𝑢𝑚 = 1
𝑁

∑
𝑁

𝑖=1
(𝑋̂𝑢𝑚, 𝑖 − 𝑋𝑢𝑚, 𝑖)

2
(7)

𝐿𝑚 represents the loss for masked data and 𝐿𝑢𝑚 for unmasked data. The total loss for the slow learner is

computed as (8).
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𝐿𝑠𝑙𝑜𝑤 = 𝜆𝐿𝑚 + (1 − 𝜆)𝐿𝑢𝑚 (8)

𝜆 is a trade-off parameter controlling the balance between reconstructing original and noisy data. 𝜆 has the

range of 0 ≤ 𝜆 ≤ 1 as per [26] as the reconstruction of the masked input is dependent on the reconstruction of the

unmasked input.

After feature representations are generated, the URT is used to dynamically select the best learner. First,

representations from all learners are aggregated (𝑅) given in (9).

𝑅 = 1
𝑀

∑
𝑀

𝑖=1
𝑓𝜃𝑖(𝑋) (9)

𝑀  represents the number of learners. Next, a query-key attention mechanism determines the best learner based

on data distribution given in (10) and (11).

𝑄 = 𝑊𝑞𝑅 + 𝑏𝑞, 𝐾 = 𝑊𝑘𝑅 + 𝑏𝑘 (10)

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇 ) (11)

𝑄 and 𝐾 represent the linear projections of the aggregated representation 𝑅 into the query and key spaces,

respectively. Here, 𝑊𝑞 and 𝑊𝑘 are learnable weight matrices, while 𝑏𝑞 and 𝑏𝑘 are corresponding bias vectors. 𝐴 is

the attention weights which performs scaled dot-product attention given in (12).

𝑌 =∑
𝑀

𝑖=1
𝐴𝑖𝑓(𝜃𝑖)(𝑋) (12)

To evaluate model performance, two primary metrics are used: Mean Squared Error (MSE) and Mean Absolute

Error (MAE). MSE measures the average squared difference between predicted and actual values using (13).

𝑀𝑆𝐸 = 1
𝑁

∑
𝑁

𝑖=1
(𝑦𝑖 − 𝑦𝑖)

2 (13)

N refers to the total number of data points (or prediction instances). MSE is sensitive to large errors, making

it useful for detecting outliers. Meanwhile, MAE calculates the absolute average error without considering the

direction of the error as given in (14).

𝑀𝐴𝐸 = 1
𝑁

∑
𝑁

𝑖=1
|𝑦𝑖 − 𝑦𝑖| (14)

The Dual-Net iTransformer method aims to enhance the accuracy of time-series forecasting by leveraging the

complementary strengths of fast-learning and slow-learning mechanisms, while integrating the URT for optimal

representation selection. By incorporating a Controlled Reconstruction Strategy, this model mitigates overfitting

and enhances robustness against noise. The evaluation results will assess its effectiveness compared to existing

state-of-the-art methods.

Algorithm  1 outlines the training procedure for Dual-Net iTransformer with URT, which consists of two

main phases. The first phase trains the fast-learning and slow-learning iTransformer models, where the fast learner

captures short-term patterns while the slow learner mitigates noise through reconstruction. The second phase

involves training the URT, which aggregates predictions from multiple fast learners and assigns optimal weights to

enhance forecast accuracy.
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Algorithm 1: Dual-Net iTransformer with URT

1
Input: Time-series data, fast learner models {𝑓𝜃𝑖(.)}

𝑀
𝑖=1, slow learner model 𝑔{𝜃}(.), number of epochs 𝐸,

number of batches 𝐵.

2 Output: Trained fast learner models {𝑓𝜃𝑖(.)}
𝑀
𝑖=1

3 // Train fast learner and slow learner

4 for 𝑒 = 1 to 𝐸 do

5 for 𝑏 = 1 to 𝐵 do

6 Predict using fast learner models {𝑓𝜃𝑖(.)}
𝑀
𝑖=1

7 Compute fast learner loss 𝐿𝑀𝑆𝐸
8 Update parameters of fast learner models {𝑓𝜃𝑖(.)}

𝑀
𝑖=1 based on 𝐿𝑀𝑆𝐸

9 Generate slow learner input mask 𝑚𝑡
10 Predict using slow learner model to obtain 𝑥𝑡
11 Compute slow learner loss 𝐿𝑆
12 Update slow learner model parameters 𝑔{𝜃}(.) based on 𝐿𝑆
13 Update fast learner models {𝑓𝜃𝑖(.)}

𝑀
𝑖=1 based on 𝐿𝑆 + 𝐿𝑀𝑆𝐸

14 end

15 end

16 Save fast learner model parameters {𝑓𝜃𝑖(.)}
𝑀
𝑖=1

17 // Train URT model

18 for 𝑒 = 1 to 𝐸 do

19 Freeze fast learner models {𝑓𝜃𝑖(.)}
𝑀
𝑖=1 trained with reconstruction loss from slow learner

20 for 𝑏 = 1 to 𝐵 do

21 for 𝑚 = 1 to 𝑀  do

22 Obtain predictions from fast learner model 𝑚
23 end

24 Combine and average predictions of all fast learner models over batch range

25 Train URT model parameters

26 Compute weights for each variable in each learner

27 Perform tensor multiplication for each variable in each learner {𝑓𝜃𝑖(.)}
𝑀
𝑖=1

28 Compute URT loss 𝐿{𝑢𝑀𝑆𝐸}
29 Update URT parameters 𝜑{𝑤𝜃}(.)
30 end

31 end

4. Experiments

4.1. Dataset

The datasets used to evaluate the models consist of four real-world datasets, which are commonly employed

in long-term time series forecasting (LSTF) research. These datasets are as follows:

1. Electricity Transformer Temperature (ETT) (Zhou et al., 2021): This dataset includes electricity consumption

data from two counties in China. It is widely used as a benchmark for evaluating LSTF models. The dataset is

divided into four subsets: ETTh1 and ETTh2, which contain hourly measurements, and ETTm1 and ETTm2,

which contain 15-minute measurements.
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2. Weather (Wu, Xu, Wang, & Long, 2022): This dataset consists of road usage data collected by multiple sensors

on freeways in the San Francisco Bay Area. The data is recorded hourly by the California Department of

Transportation.

3. Influenza-like Illness (ILI) (Wu, Xu, Wang, & Long, 2022): The ILI dataset contains weekly records of influenza-

like illness (ILI) cases reported by the Centers for Disease Control and Prevention (CDC) in the United States

from 2002 to 2021. It specifically represents the ratio of patients diagnosed with ILI to the total number of

patients.

4. Exchange (Wu, Xu, Wang, & Long, 2022): This dataset includes daily exchange rates from eight different

countries, covering the period from 1990 to 2016.

For model training, the datasets are divided into separate subsets using predefined proportions. The Weather,

ILI, and Exchange datasets are split using a 7:1:2 ratio, meaning 70% of the data is used for training, 10% for

validation, and 20% for testing. Meanwhile, the ETT dataset follows a 6:2:2 ratio, with 60% allocated for training,

20% for validation, and 20% for testing. These partitioning strategies align with the standards commonly used in

long-term time series forecasting models.

4.2. Results

The experimental results evaluating the performance of Dual-Net iTransformer are presented in Table 2. Mean

Squared Error (MSE) and Mean Absolute Error (MAE) are used to assess and compare the proposed model against

existing models, including OS-ELM, MANTRA, iTransformer, Reformer, and Informer. According to Table  2,

Dual-Net iTransformer consistently outperforms all baseline models in long-term forecasting tasks. Specifically, as

shown in Table 3, the model achieves lower MSE and MAE across multiple datasets, with an average improvement

of 17.01% over MANTRA, and 6.48% over iTransformer.

In contrast to the other models, OS-ELM demonstrates strong performance on the ILI and Weather datasets,

outperforming all other models on these datasets. Compared to Dual-Net iTransformer URT, OS-ELM achieves an

average performance improvement of 19.64% on the Weather dataset and 152.54% on the ILI dataset. However,

for the ETT and Exchange datasets, Dual-Net iTransformer URT remains superior, with average performance

improvements of 126.74% over OS-ELM on the ETT dataset and 20.68% over OS-ELM on the Exchange dataset.

The OR-ELM model also demonstrates promising results on the ILI dataset. While OS-ELM performs slightly

better, OR-ELM still surpasses most of the other baseline models.

Despite OSELM’s impressive performance on specific datasets, we encountered some technical limitations

during experimentation. When using OSELM with the ETT dataset, we observed extremely high and volatile

prediction values, occasionally resulting in overflow issues that produced NaN values. Similarly, ORELM experi

enced convergence problems with the ETT dataset, generating “LinAlgError: SVD did not converge” errors during

training, particularly in the pseudo-inverse matrix calculations used in the algorithm.

Fig. 2 and Fig. 3 provide illustrative examples of the effectiveness of the proposed Dual-Net iTransformer in

forecasting real-world time series data. In Fig. 2, the model accurately captures the complex temporal dynamics of

the Weather dataset across 200 time steps, including periodic fluctuations and localized irregularities. This demon

strates its capability to adapt to diverse patterns within a relatively short prediction window. When the forecast

horizon is extended to 300 data points in Fig. 3, the model continues to exhibit strong alignment with the ground

truth, maintaining stable predictions even as the complexity and uncertainty of the sequence increase. These results

highlight the model’s robustness, generalization ability, and effectiveness in long-term forecasting tasks involving

non-stationary and fluctuating data.

5. Discussions

The performance variations observed across different datasets can be attributed to their inherent characteristics.

The Weather dataset, which exhibits strong seasonal patterns, presents challenges for the URT layer in the Dual-Net

iTransformer architecture. This limitation is evident in the model’s relatively weaker performance compared to OS-
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Table 2: Performance of Dual-Net iTransformer on Multivariate Data Prediction

Dual-

Net+URT
iTransformer OSELM ORELM MANTRA Autoformer Informer Reformer

Dataset
Forecasting

horizon
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETT 96 0.121 0.235 0.297 0.349 1.012 1.986 0.847 0.999 0.212 0.295 0.255 0.326 0.650 0.453 0.658 0.619

192 0.154 0.268 0.380 0.400 - - - - 0.275 0.335 0.299 0.350 0.533 0.563 1.078 0.827

336 0.195 0.299 0.428 0.432 - - - - 0.327 0.365 0.337 0.372 1.363 0.887 1.549 0.972

720 0.245 0.336 0.427 0.445 - - - - 0.440 0.435 0.442 0.432 3.379 1.388 2.631 1.242

Weather 96 0.173 0.212 0.174 0.214 0.064 0.074 0.337 0.841 0.248 0.321 0.269 0.338 0.300 0.384 0.689 0.596

192 0.223 0.227 0.221 0.254 - - - - 0.281 0.338 0.297 0.354 0.598 0.544 0.752 0.638

336 0.280 0.297 0.278 0.296 - - - - 0.239 0.369 0.358 0.392 0.578 0.523 0.639 0.596

720 0.360 0.351 0.358 0.349 - - - - 0.405 0.414 0.450 0.452 1.059 0.741 1.130 0.792

Exchange 96 0.085 0.205 0.090 0.211 0.702 0.664 0.843 1.001 0.155 0.285 0.153 0.285 0.847 0.752 1.065 0.829

192 0.177 0.299 0.194 0.315 - - - - 0.266 0.377 0.295 0.395 1.204 0.895 1.188 0.906

336 0.320 0.409 0.333 0.418 - - - - 0.421 0.480 0.446 0.496 1.672 1.036 1.357 0.976

720 0.884 0.711 0.914 0.726 - - - - 1.168 0.847 1.503 0.919 2.478 1.310 1.510 1.106

ILI 24 2.424 0.979 2.415 0.984 0.021 0.108 0.249 0.121 3.238 1.224 3.680 1.346 5.764 1.677 4.400 1.382

36 2.078 0.938 2.354 0.999 - - - - 2.396 1.176 3.629 1.260 4.755 1.467 4.783 1.448

48 2.207 0.951 2.268 0.976 - - - - 2.941 1.144 3.376 1.258 4.763 1.469 4.832 1.465

60 2.183 0.959 2.360 1.000 - - - - 2.705 1.106 2.917 1.590 5.278 1.560 4.882 1.483

Table 3: Dual-Net iTransformer Performance Improvement over Other Models

iTransformer OSELM ORELM MANTRA Autoformer Informer Reformer
Dataset

Forecasting

horizon MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETT 96 0.18 0.11 0.89 1.75 0.73 0.76 0.09 0.06 0.13 0.09 0.53 0.22 0.54 0.38

192 0.23 0.13 - - - - 0.12 0.07 0.14 0.08 0.38 0.29 0.92 0.56

336 0.23 0.13 - - - - 0.13 0.07 0.14 0.07 1.17 0.59 1.35 0.67

720 0.18 0.11 - - - - 0.20 0.10 0.20 0.10 3.13 1.05 2.39 0.91

Weather 96 0.001 0.002 −0.11 −0.14 0.16 0.63 0.08 0.11 0.10 0.13 0.13 0.17 0.52 0.38

192 −0.002 0.03 - - - - 0.06 0.11 0.07 0.13 0.38 0.32 0.53 0.41

336 −0.002 −0.001 - - - - −0.04 0.07 0.08 0.10 0.30 0.23 0.36 0.30

720 −0.002 −0.002 - - - - 0.05 0.06 0.09 0.10 0.70 0.39 0.77 0.44

Exchange 96 0.005 0.01 0.62 0.46 0.76 0.80 0.07 0.08 0.07 0.08 0.76 0.55 0.98 0.62

192 0.02 0.02 - - - - 0.09 0.08 0.12 0.10 1.03 0.60 1.01 0.61

336 0.01 0.01 - - - - 0.10 0.07 0.13 0.09 1.35 0.63 1.04 0.57

720 0.03 0.02 - - - - 0.28 0.14 0.62 0.21 1.59 0.60 0.63 0.40

ILI 24 −0.01 0.01 −2.40 −0.87 −2.17 −0.86 0.81 0.24 1.26 0.37 3.34 0.70 1.98 0.40

36 0.28 0.06 - - - - 0.32 0.24 1.55 0.32 2.68 0.53 2.71 0.51

48 0.06 0.03 - - - - 0.73 0.19 1.17 0.31 2.56 0.52 2.63 0.51

60 0.18 0.04 - - - - 0.52 0.15 0.73 0.63 3.09 0.60 2.70 0.52

ELM on this dataset. The recurring nature of weather data at specific time intervals appears to be better captured

by OS-ELM’s approach, highlighting the influence of seasonality in forecasting performance.

The fast learner is designed to capture short-term, high-frequency patterns, while the slow learner is responsible

for modeling long-term dependencies and mitigating noise. The URT layer dynamically integrates their outputs,

ideally selecting the most relevant representation based on input characteristics. However, in highly seasonal data

such as Weather, the URT may not properly measure the priority of the two learners. Visual analysis in Fig. 2 supports

this finding, where the Dual-Net iTransformer demonstrates moderate accuracy in tracking weather patterns but
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Fig. 2: Prediction from Weather Dataset for 200 data. Fig. 3: Prediction from Weather Dataset for 300 data.

exhibits slight lag during sharp seasonal transitions. This suggests the need for future refinement of the URT layer

when applied to datasets with strong periodic behavior.

Our experiments revealed that Dual-Net iTransformer URT’s performance improves with increasing prediction

sequence length, particularly on the ETT dataset with lengths of 96, 192, 336, and 720. This trend suggests that

ensemble learning becomes more effective as the forecasting horizon extends in larger datasets. However, this

pattern was not observed in datasets with shorter prediction sequences, such as ILI (24, 36, 48, and 60) and Weather,

indicating that sequence length influences model performance differently depending on dataset characteristics.

Fig. 3 illustrates the model’s ability to remain stable over extended forecast windows. In this long-range scenario,

the predictions closely follow the ground truth trend with minimal drift, underscoring the synergy between the fast

and slow learners in mitigating cumulative error across time steps.

When compared to other Transformer-based architectures, such as Informer, LogTrans, and Reformer, our

model demonstrates significant superiority in both MSE and MAE metrics. The average performance improvements

are: 97.11% over Informer, 95.14% over LogTrans, and 91.36% over Reformer. These improvements stem from

fundamental differences in how each architecture processes time-series data:

• Informer employs sparse self-attention to enhance computational efficiency but struggles with complex

multivariate relationships. While its mechanism improves efficiency, it fails to fully capture intricate temporal

dependencies in multivariate time series data.

• LogTrans uses log-sparse attention to efficiently model long-range dependencies but may miss critical infor

mation in highly variable time series due to its selective attention mechanism.

• Reformer, with its locality-sensitive hashing and reversible layers, prioritizes memory efficiency over prediction

accuracy, leading to lower performance in complex forecasting tasks.

The enhanced performance of our Dual-Net iTransformer URT can be attributed to the Inverted Transformer’s

innovative embedding approach, which groups variables into unified embedding spaces. This method enables

a more effective capture of temporal relationships between variables compared to conventional approaches.

Additionally, our model’s simplified architecture—utilizing only one fast learner and one slow learner instead of

multiple learners, as employed by models like MANTRA—demonstrates that strategic architectural simplification

can enhance performance while reducing computational requirements.

6. Conclusions and Future Works

We developed the Dual-Net iTransformer for long term time series forecasting which uses one fast learner and

one slow learner with the URT layer as its ensemble layer. Our model demonstrated superior performance compared

to OS-ELM and OR-ELM models across most datasets. When compared to the individual iTransformer model,

Dual-Net iTransformer URT showed advantages on ETT, Exchange, and ILI datasets. However, this model was less
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effective for the Weather dataset which has seasonal trends, where the individual iTransformer model performed

better. This indicates that the ensemble approach in Dual-Net iTransformer is more effective for multivariate datasets

with complex patterns but has limitations with seasonal datasets. As a future work, an aggregation techniques can

help optimize our model’s ability to capture complex patterns in time series data.
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