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ABSTRACT

The imbalance of Javanese script data in ancient manuscript recognition poses a challenge due to the limited availability of

data. A potential approach to addressing this issue is the use of Generative Adversarial Networks (GAN). This study evaluates

the effectiveness of synthetic data generated using Enhanced Balancing GAN (EBGAN) in mitigating data imbalance. Various

evaluation scenarios are conducted, including: (i) assessing the impact of synthetic data as augmentation, (ii) evaluating

the sufficiency of synthetic data for recognition models, (iii) analyzing minority class oversampling with different selection

strategies, and (iv) evaluating model generalization through cross-validation. Quantitative analysis of the generated synthetic

data, based on Fréchet Inception Distance (FID) and Structural Similarity Index (SSIM), as well as visual assessment, indicates

that the quality of synthetic data closely resembles real data. Additionally, experimental results demonstrate that combining

real and synthetic data improves accuracy, precision, recall, and F1-score. The oversampling strategy for synthetic data has

proven effective in meeting the data sufficiency requirements for training recognition models. Meanwhile, selecting minority

classes and determining threshold values based on percentage, distribution, and model performance in oversampling can serve

as guidelines for enhancing script recognition performance. Compared to previous methods, the use of EBGAN has been shown

to produce more diverse synthetic data with better visual quality. However, further research is still needed to optimize GAN

performance in supporting script recognition.
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1. Introduction

Javanese script has an important historical value as one of the cultural heritages of the Nusantara that reflects

the identity and rich traditions of the Indonesian nation [1]. It was widely used in ancient manuscripts to record a

variety of information, from religious texts to royal history [2]. However, since the 19th century Javanese script

has experienced a decline in use due to the use of more practical Latin script, including the influence of the cost of

using it in more expensive production media [2].

In addition, the introduction of Javanese script through a technological approach faces great challenges [3].

Javanese script is in danger of experiencing data imbalance due to limited data access like other local scripts in

Indonesia (such as Sundanese and Balinese scripts) [4]. Javanese script has structural uniqueness and complexity

that often makes data collection difficult, especially in ancient manuscripts that have a variety of writing forms [5].

This problem becomes more complicated by the presence of underrepresented characters, so the model tends to be

biased towards the majority class.

To overcome this problem, one of the approaches is the use of synthetic data, which is considered to be

more robust than algorithmic approaches [6]. There are several traditional methods that are often used to handle
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data imbalance, such as image transformation (rotation, translation, tilt, etc.) or image interpolation approach with

Synthetic Minority Oversampling Technique (SMOTE) [7]. A more recent approach using Generative Adversarial

Networks (GAN) has proven to be effective in generating synthetic data that resembles the original data both in

terms of data distribution and recognition accuracy [8]. However, there is a need for in-depth research and evaluation

of strategies for using synthetic data that improving script recognition on imbalanced data effectively.

This study aims to evaluate the effectiveness of using synthetic data using GAN in improving Javanese script

recognition on ancient manuscripts. The GAN approach used in this research is using Enhanced Balancing GAN

(EBGAN) [9], which is designed to make synthetic data using imbalanced data, allowing it to overcome the problem

of data imbalance effectively. In addition, some contributions from this research are as follows:

• Evaluating the effectiveness of synthetic data in Javanese script recognition, either as a substitute or complement

to the original data.

• Proposing a synthetic data generation approach using GAN which adaptively handling imbalanced data.

• Identify empirical guidelines in the use of synthetic data for Javanese script recognition.

By conducting the approaches and methods mentioned, this research aims to contribute to the development of

Javanese script recognition methods in ancient manuscripts.

2. Literature Review

Handling data imbalance in the early stages using traditional methods is done by using sampling methods or

data augmentation (such as rotation, translation, scale, etc.). Sampling methods can be divided into undersampling,

oversampling, and hybrid methods that combine both. In the oversampling method, other than using random

oversampling, there are more systematic methods using interpolation between data such as Synthetic Minority

Oversampling Technique (SMOTE) [10], [11], Borderline-SMOTE (B-SMOTE) [12], [13], and Adaptive Synthetic

Sampling (ADASYN) [14], [15]. The weakness of traditional methods is that they are not capable of generating

data outside the existing distribution, and the possibility of creating the same synthetic data repeatedly is high [16].

Augmentation methods using Generative Adversarial Networks (GAN) [17], [18], are considered to overcome

the shortcomings of traditional methods. GANs consist of two main components, namely generators and discrimi

nators, which are trained simultaneously in an adversarial framework. Various types of GANs have been generated

in previous studies to generate class-based synthetic data, such as Conditional GAN [19], [20], Auxiliary Classifier

GAN (ACGAN) [21], Conditional Wasserstein GAN (CWGAN) [22], or Balancing GAN (BAGAN) [23]. The

BAGAN approach focuses on the generation of synthetic data using unbalanced data, making it suitable for use on

real data. The development of BAGAN, namely Enhanced Balancing GAN (EBGAN) [9] optimizes the previous

method with a better approach and has been proven to improve the quality of the synthetic data generated.

At the time of this research, no handling of data imbalance on Javanese script data was found, but some research

on other similar scripts has been conducted. The study [4] using traditional methods of translation and rotation on

Sundanese script, was proved to increase the accuracy of character detection from 72.29% to 93.92%, but the study

did not explain the distribution of the resulting data. The study [24] proposed handling data imbalance in Japanese

script data using a two-stage generation system Cascade Variational Auto Encoder (VAE). The results showed that

the use of synthetic data was able to increase accuracy from 94.02% to 95.56%.

Handling data imbalance using GAN has been done in previous studies. The study [25] proposed the use

of Multiple Fake Class GAN (MFC-GAN) to handle data imbalance by creating different minority class samples

for each class. MFC-GAN was shown to accelerate model convergence, and improve classification accuracy on

MNIST, E-MNIST, SVHN, and CIFAR-10 data. The study [26] used a two-stage combination with ScrabbleGAN

and Bidirectional LSTM to generate synthetic data on handwriting in Arabic script in one word assisted with

Connectionist Temporal Classification (CTC). The method proved to overcome the problem of data imbalance in the

INF/ENIT and AHDB datasets. Meanwhile, research [27] used Transfer Historical GAN (TH-GAN) by optimizing

the use of U-Net in the generator and WGAN in the discriminator. TH-GAN is able to perform style transfer from

ancient Chinese manuscript characters into printed characters from Hei Ti, Song Ti, and Kai Ti fonts to produce
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synthetic data that can improve recognition accuracy in Chinese characters. Research [28] proposed the Semi-

MixFontGAN method using Multi-Task Font Encoder to extract features from data and Font Transfer Network and

combine it with labelled and unlabeled data through MixFont to generate synthetic data. Experimental results show

that Semi-MixFontGAN can improve the classification accuracy from 93.52% to 96.69% on Kuzushiji dataset.

According to those studies, the use of synthetic data generated from GAN can help improve the accuracy of

character recognition. Thus, this study aims to evaluate the handling of data imbalance in Javanese characters of

ancient manuscripts using GAN.

3. Methodology

In this research, there are several stages in the evaluation. First, splitting the original Javanese script data into

training data and test data. The training data is then further divided into training data and validation data which

are used to train the GAN model. Then, the Enhanced Balancing GAN (EBGAN) model was trained using the

training data to produce synthetic data as augmentation data. Furthermore, the synthetic data generated by the

GAN generator is used in various scenarios, either as a single training data, in combination with the original data,

or to balance the class data distribution. This balanced dataset is used to train the classification model, which is

evaluated using test data based on accuracy, precision, recall, and F1-score metrics to assess the effectiveness of

using synthetic data. Fig. 1 shows the overall process of this research.

Fig. 1: Research Methodology

Fig. 2: Illustration of images in the HJCS_DETC

dataset and distribution of majority and minority

classes

3.1. Dataset Description

This research uses the HJCS_DETC dataset [29], a dataset originally used for object detection. The dataset

consists of 60 images that have been collected and annotated from manuscripts, consisting of 74 character classes of

the Javanese script. This research focuses on 20 character classes taken from wyanjana script to represent the basic

characters in Javanese script. Examples of images in the HJCS_DETC dataset and illustrations of the distribution

of majority and minority character positions can be seen in Fig. 2.

Each character is extracted and processed as a single image to produce uniform data. Several stages of

processing were performed: conversion to grayscale, application of gaussian blur to reduce noise, application of

Otsu thresholding to increase character contrast, and conversion of the image to a size of 32x32 pixels while adding

padding to position the character in the center of the image. This processing ensures that the data is standardized

and uniform, making it easier for the model to create synthetic data and perform classification. The total characters

contained in this dataset are 10,975 characters and are imbalanced, as can be seen in Fig. 3. Fig. 4 shows the feature

representation of HJCS_DETC using pre-trained ResNet50 and embedding as a feature extractor, it can be seen that
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Fig. 3: Character class distribution on the HJCS_DETC dataset
Fig. 4: Visualization of HJCS_DETC dataset

features using pre-trained ResNet50 and Em

bedding

Fig. 5: Autoencoder initialization process on EBGAN

the feature representation between classes can be clearly distinguished and there is a difference in the amount of

each feature, according to the number of images in the dataset.

3.2. Data Synthetic using Enhanced Balancing GAN (EBGAN)

In this study, EBGAN [9] is used to generate synthetic data with a focus on increasing the number of samples

for minority characters. EBGAN was chosen for this task primarily because it addresses the critical challenge of

data imbalance, which is especially relevant in Javanese script recognition, where certain characters appear less

frequently. EBGAN consists of two main stages, namely autoencoder initialization and GAN training. The basic

idea is derived from Balancing GAN (BAGAN) [23] by learning the distribution of the original data using encoders

and decoders, resulting in reconstructed image data. EBGAN then adds class labels through an embedding process

at initialization to clarify the differences between the resulting character classes. In this process, EBGAN minimizes

the L1 loss value between the original data and the generated data to train the autoencoder. Unlike BAGAN,

EBGAN can learn information from the classes, thus helping to generate synthetic data in a controlled manner.

This method not only preserves the structural integrity of the characters, as autoencoders do, but also introduces the

necessary variations to enhance generalization, making it more robust for training models on imbalanced datasets.

An illustration of the encoder initialization process can be seen in Fig. 5.

The pre-trained decoder is then used in the GAN training process as a generator. In this process, the generator

is trained using normal noise and labels from the original data, and produces a reconstructed image as fake data.

Unlike BAGAN, EBGAN uses the discriminator architecture of cWGAN-GP [22] to eliminate the dependency
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Fig. 6: GAN training process on EBGAN

of using the encoder from the initialization process. In addition, EBGAN also uses gradient-penalty as in [30] to

limit the gradient during the training process. Moreover, EBGAN introduces a training ratio of more than one to

improve convergence between the generator and discriminator. An illustration of the GAN training process can be

seen in Fig. 6.

The GAN training process applies an adversarial process, i.e., the process will be considered optimal if it is able

to maximize the loss of the discriminator and minimize the loss of the generator. If the generator , discriminator ,

real image sample from the real image probability distribution , fake image sample from the fake image probability

distribution , where and is a random noise vector sample obtained from the normal distribution , then the GAN

objective function can be defined in (1). The discriminator maximizes the loss function using (2) and the generator

minimizes the loss function using (3).

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝑉

𝑉 (𝐺,𝐷) = 𝐸𝑥𝑟∼𝑋𝑟𝑒𝑎𝑙
[𝑙𝑜𝑔(𝐷(𝑥𝑟))] + 𝐸𝑥𝑔∼𝑋𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

[𝑙𝑜𝑔(1 − 𝐷(𝑥𝑔))] (1)

𝑚𝑎𝑥
𝐷

𝐿𝐷(𝑋𝑟𝑒𝑎𝑙, 𝑋𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑) = −𝐸𝑥𝑟∼𝑋𝑟𝑒𝑎𝑙
[𝑙𝑜𝑔(𝐷(𝑥𝑟))] − 𝐸𝑥𝑔∼𝑋𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

[𝑙𝑜𝑔(1 − 𝐷(𝑥𝑔))] (2)

𝑚𝑖𝑛
𝐺

𝐿𝐺(𝑋𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑) = −𝐸𝑥𝑔∼𝑋𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑
[𝑙𝑜𝑔(𝐷(𝑥𝑔))] (3)

Then to accelerate convergence and improve stability in the training process, EBGAN adapted Wasserstein

GAN-gradient penalty (WGAN-GP) [30], [31] by applying Wasserstein distance and gradient-penalty as the main

concepts. Wasserstein distance is defined as the minimum amount to move to form . However, it is not computa

tionally effective, so using Kanotrovich-Rubinstein duality, for as a 1-Lipschitz function, the Wasserstein distance

function can be defined as (4).

𝑊(𝑋𝑟𝑒𝑎𝑙, 𝑋𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑) = 𝑠𝑢𝑝
𝐿𝐷∼𝐿𝑖𝑝1

(𝐸𝑥𝑟∼𝑋𝑟𝑒𝑎𝑙
[𝐷(𝑥𝑟)] − 𝐸𝑥𝑔∼𝑋𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

[𝐷(𝑥𝑔)]) (4)

Then the 1-Lipschitz function will force the discriminator function , to avoid extreme predictions. In WGAN,

the discriminator is referred as “critic” C which will maximize the difference of expected values of and . Unlike a

typical GAN that will produce a probability value, Wasserstein GAN will produce a more meaningful value to train

the GAN. However, it becomes a problem if the value is infinite, hence the use of gradient-penalty will limit the

value by applying regularization to the gradient in training using interpolation between the two images and . If is

the interpolation, and , then the gradient-penalty function can be defined in (5).

𝐺𝑃 = 𝐸𝑥̂∼𝑋̂[(‖𝛻^(𝑥)𝐶(𝑥)‖2 − 1)
2
] (5)

Thus, if is the weight of the gradient-penalty function then the objective function of WGAN-GP is defined

in (6).
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𝑚𝑎𝑥
𝐶

𝐿𝐶(𝑋𝑟𝑒𝑎𝑙, 𝑋𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑)

= 𝐸𝑥𝑟∼𝑋𝑟𝑒𝑎𝑙
[𝐶(𝑥𝑟)] − 𝐸𝑥𝑔∼𝑋𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

|[𝐶(𝑥𝑔)] + 𝜆𝐸𝑥̂∼𝑋̂[(‖𝛻^(𝑥)𝐶(𝑥)‖2 − 1)
2
]

(6)

Then EBGAN adapted draGAN [32] by using log-sigmoid loss function and adapted cWGAN-GP [22] by

adding the label of the real image to the generator and discriminator to control the class in the generator. EBGAN

adopts the model training system in BAGAN to overcome data imbalance and applies class-based training conver

gence optimization by using a random label for fake images and a random label for real images. So, the final loss

value of the discriminator is defined in (7) and the loss value of the generator is defined in (8).

𝑚𝑎𝑥
𝐶

𝐿𝐶(𝑋𝑟𝑒𝑎𝑙, 𝑍, 𝑌𝑟𝑒𝑎𝑙, 𝑌𝑓𝑎𝑘𝑒, 𝑌𝑤𝑟𝑜𝑛𝑔) = −𝐸𝑥𝑟,𝑦𝑟
∼ (𝑋𝑟𝑒𝑎𝑙, 𝑌𝑟𝑒𝑎𝑙)[𝑙𝑜𝑔(𝐶(𝑥𝑟, 𝑦𝑟))]

−𝐸𝑧,𝑦𝑓
∼ (𝑍, 𝑌𝑓𝑎𝑘𝑒)[𝑙𝑜𝑔(1 − 𝐶(𝐺(𝑧, 𝑦𝑓), 𝑦𝑓))]

−𝐸𝑥𝑟,𝑦𝑤
∼ (𝑋𝑟𝑒𝑎𝑙, 𝑌𝑤𝑟𝑜𝑛𝑔)[𝑙𝑜𝑔(1 − 𝐶(𝑥𝑟, 𝑦𝑤𝑟𝑜𝑛𝑔))]

+𝜆𝐸(𝑥̂,𝑦𝑟)∼(𝑋̂,𝑌𝑟𝑒𝑎𝑙)
[(‖𝛻(𝑥̂,𝑦𝑟)𝐶(𝑥, 𝑦𝑟)‖2

− 1)
2
]

(7)

𝑚𝑖𝑛
𝐺

𝐿𝐺(𝑍, 𝑌𝑓𝑎𝑘𝑒) = −𝐸(𝑧,𝑦𝑓)∼(𝑍,𝑌𝑓𝑎𝑘𝑒)[𝑙𝑜𝑔(𝐶(𝐺(𝑧, 𝑦𝑓)))] (8)

The decision to use EBGAN is also supported by previous studies demonstrating its effectiveness in generating

high-quality synthetic data for imbalanced datasets. For instance, in the original EBGAN paper, the method showed

superior performance in domains requiring balanced data augmentation, outperforming traditional GAN models in

both visual quality and distribution accuracy. EBGAN has been successfully tested on benchmark datasets such as

MNIST, CIFAR-10, and cell imaging datasets, where it consistently achieved lower FID scores, and better class

distribution balance compared to models like WGAN and BAGAN. In the MNIST dataset, EBGAN was able to

generate clearer and more distinct digit representations, while in CIFAR-10, it managed to maintain inter-class

diversity without sacrificing image quality. For biomedical applications, such as cell image datasets, EBGAN

demonstrated its ability to generate high-fidelity synthetic images, aiding in data augmentation for rare cell types.

By leveraging these proven strengths, this paper applies EBGAN to the specific challenges of Javanese manuscript

recognition, aiming to replicate similar improvements in performance.

3.3. Recognition Model Architecture

The model used for Javanese script recognition is a Simple Convolutional Neural Network (CNN) with a

customized architecture for script image recognition. The architecture consists of three convolutional layers with

the number of filters 32, 64, and 128 respectively, each using a kernel size of 3×3 and a ReLU activation function.

In addition, a dropout at 0.5 was used to reduce overfitting. The model was computed using Adam’s optimizer with

learning rate 1e-4 and sparse categorical cross entropy loss function. Training was performed for 10 epochs with

a batch size of 32, and validation using test data to evaluate the performance of the model. An illustration of the

Simple CNN architecture used can be seen in Fig. 7.

3.4. Evaluation Scenario

This study aims to evaluate the effectiveness of using synthetic data generated by GAN in Javanese script

recognition through three main scenarios designed to cover different aspects of evaluation. Each scenario is designed

to answer specific questions regarding the impact of synthetic data on model performance, both globally and on

minority classes.

A. Effect of Synthetic Data on Original Data

This scenario aims to evaluate the impact of synthetic data on classification model performance when used as

a supplement to the original data. Synthetic data was generated using the GAN and added to the original dataset

with the aim of balancing the number of samples between classes. In this evaluation, each class in the dataset
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Fig. 7: Simple CNN Architecture for character recognitions

was expanded to the maximum number of classes with the largest number of samples. The evaluation is done by

comparing the performance of the models trained using the original data, synthetic data, and also their combinations.

B. Synthetic Data Sufficiency for the Recognition Model

This scenario is designed to determine the optimal amount of synthetic data that can be used without overfitting

the model. The synthetic data was added in varying amounts, varying from the same amount as the original data

up to several times more. The analysis was conducted to identify the optimal limit at which the synthetic data still

provided performance improvement before it started to have a diminishing returns effect. This is important to ensure

that augmentation using synthetic data is sufficient and still effective in improving the generalizability of the model.

C. Effect of Minority Class Selection

In this scenario, the study evaluates an oversampling strategy that targets only minority classes compared

to oversampling all classes. The minority class is determined based on several approaches, such as the number

of samples in the dataset, statistical distribution (median, quartile), and initial model performance (low recall or

𝐹1-𝑠𝑐𝑜𝑟𝑒). These strategies are compared to assess whether a more selective augmentation can provide more

optimal results than a whole-of-class oversampling approach.

D. Generalizability of the Recognition Model

To evaluate the stability and generalizability of the model, cross validation was performed using the 𝐾-Fold

Cross Validation method with =5 and =10. There is no fixed number of 𝑘 values, but 5 and 10 were chosen because

they represent a division of data that is suitable for both sufficient and limited data [33]. This approach aims to

assess how well the model is able to adapt over variations in the training data. The model is tested on various subsets

of data ensuring the use of synthetic data does not cause unwanted bias and consistently improves the model’s

performance. The evaluation also considers the standard deviation of the test results to measure the variability and

stability of the model’s predictions in various scenarios.

The evaluation in each scenario was conducted using two main metrics: data generation quality metrics and

classification performance metrics. Generation quality metrics are obtained by the Fréchet Inception Distance (𝐹𝐼𝐷)

and Structural Similarity Index Measure (𝑆𝑆𝐼𝑀) values. Meanwhile, classification metrics are obtained by the

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, and 𝐹1-𝑠𝑐𝑜𝑟𝑒 values both globally and specifically for each class.

FID value is a metric to measure the distance between two data distributions, performed by comparing the mean

and covariance of the feature vectors generated from the Inception V3 pre-trained network between the original

data and the fake data. If and are the mean and covariance of the original and fake data features, then the 𝐹𝐼𝐷 value

can be defined in (9). The lower 𝐹𝐼𝐷 value indicates that the fake data is closer to the distribution of the test data.

𝐹𝐼𝐷(𝑟, 𝑔) = ‖𝜇𝑟 − 𝜇𝑔‖
2
2
+ 𝑇𝑟(𝛴𝑟 + 𝛴𝑔 − 2(𝛴𝑟𝛴𝑔)

1
2) (9)
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𝑆𝑆𝐼𝑀 value is a metric to measure the structural similarity between two data using the luminance, contrast,

and structure of the data. If is the average intensity, is the standard deviation, and is the covariance between the

original and fake data for the original image and fake image, then the 𝑆𝑆𝐼𝑀 value can be defined in (10). The

larger 𝑆𝑆𝐼𝑀 value and closer to a score of 1, indicates a better structural similarity between the original data and

the fake data.

𝑆𝑆𝐼𝑀(𝑟, 𝑔) = (2𝜇𝑟𝜇𝑔 + 𝐶1)
2𝜎𝑟𝑔 + 𝐶2

(𝜇2
𝑟 + 𝜇2

𝑔 + 𝐶1)(𝜎2
𝑟 + 𝜎2

𝑔 + 𝐶2)
(10)

In evaluating the classification performance, several metrics can be used to indicate the performance of the

classification model. The 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, and 𝐹1-𝑠𝑐𝑜𝑟𝑒 can be calculated using the confusion matrix.

If is the number of correct positive predictions, is the number of correct negative predictions, is the number of

incorrect positive predictions, and is the number of incorrect negative predictions, then the 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛,

𝑟𝑒𝑐𝑎𝑙𝑙, and 𝐹1-𝑠𝑐𝑜𝑟𝑒 values can be calculated with Equations (12)-(15).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(11)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(12)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(13)

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(14)

4. Experiments and Results

4.1. Characteristic Evaluation of Synthetic Data

To evaluate the effectiveness of the synthetic data generated by EBGAN, an analysis was conducted on the

characteristics of the synthetic data. Using EBGAN’s generator trained on the original data, a total of 2000 synthetic

data samples were generated. See Fig. 8 for sample of results. EBGAN is successful in replicating original data

visually, particularly in the majority class with consistent patterns and detail. However, in the minority class,

some weaknesses are observed, such as broken, too thick, or wrongly connected characters. Although, the t-SNE

visualization in Fig. 9 shows that synthetic data still has clear inter-class clusters, reflecting a good representation

of the original data distribution at the global level. This shows that despite the shortcomings in visual quality of

some classes, EBGAN is still effective in representing inter-class information for data augmentation.

Table 1 shows the FID score between the original data, generated image using EBGAN, and reconstructed

image of Autoencoder, compared with the test data. The FID value of the original data is used as the reference

minimum value and the Autoencoder reconstructed image is used as the reference maximum value. The results

show that the EBGAN and Autoencoder methods generate synthetic data that does not fully resemble the original

distribution. The autoencoder tends to produce higher FID values than EBGAN in most classes, indicating that

although the autoencoder can generate more data variations, the distribution is further away from the original data.

However, EBGAN’s performance resulting in lower FID scores compared with autoencoder in minority classes

such as Ca (3), Wa (9), Dha (12), Ja (13) and Tha (19). This indicates that EBGAN faces difficulties in representing

characters that rarely appear in the original dataset, resulting in less realistic synthetic data for those classes. In

contrast, the autoencoder still shows more consistent results on minority classes because of its goals on simplifying

reconstruction of the original data without generating variations. This shows that the imbalance in the original

dataset affects EBGAN’s performance, especially in generating synthetic data for classes with a small amount data.
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Fig. 8: Samples of synthetic data results from the GAN process in each class, red

circles indicate characters that failed to be formed, blue circles indicate characters

that are over-thick, yellow circles indicate characters that are connected

Fig. 9: Visualization of synthetic data features using

pre-trained ResNet50 and Embedding

Table 1: Comparison of FID values over 2000 samples of synthetic data using GAN

Class 1 Ha 2 Na 3 Ca 4 Ra 5 Ka 6 Da 7 Ta 8 Sa 9 Wa 10 La

Original* 88.72 113.67 134.50 123.86 88.74 121.17 103.34 119.28 135.10 87.62

EBGAN 133.79 160.47 195.46 188.26 153.51 179.10 158.96 177.55 218.65 152.50

Autoencoder 157.03 199.58 188.24 191.24 173.42 202.92 182.73 178.66 211.09 173.28

Class 11 Pa 12 Dha 13 Ja 14 Ya 15 Nya 16 Ma 17 Ga 18 Ba 19 Tha 20 Nga

Original* 130.16 139.82 163.81 85.44 101.31 138.17 94.95 128.34 183.01 144.12

EBGAN 204.08 240.05 263.54 145.70 193.93 192.84 152.29 184.71 298.04 196.58

Autoencoder 218.95 205.32 222.47 174.74 221.81 228.89 179.71 212.84 233.22 217.77

Table 2: Comparison of SSIM values over 2000 samples of synthetic data using GAN

Class 1 Ha 2 Na 3 Ca 4 Ra 5 Ka 6 Da 7 Ta 8 Sa 9 Wa 10 La

Original* 0.605 0.536 0.548 0.518 0.642 0.484 0.564 0.492 0.510 0.579

EBGAN 0.575 0.522 0.514 0.504 0.602 0.470 0.535 0.473 0.490 0.560

Autoencoder 0.613 0.542 0.562 0.521 0.649 0.489 0.571 0.498 0.513 0.586

Class 11 Pa 12 Dha 13 Ja 14 Ya 15 Nya 16 Ma 17 Ga 18 Ba 19 Tha 20 Nga

Original* 0.474 0.573 0.418 0.613 0.688 0.531 0.626 0.595 0.410 0.513

EBGAN 0.466 0.484 0.385 0.578 0.581 0.499 0.586 0.578 0.320 0.478

Autoencoder 0.476 0.579 0.419 0.619 0.687 0.535 0.630 0.604 0.411 0.518

Evaluation using the Structural Similarity Index (SSIM) in Table 2 shows that the autoencoder produces higher

scores than EBGAN and even the original data, reflecting its ability to reconstruct images with visual structures that

are very similar to the original data. This is understandable as the autoencoder is designed to preserve the original

details without adding variations. Meanwhile, EBGAN resulted in lower SSIM scores due to its process aimed

at creating synthetic data with additional variations. This drop in scores is more pronounced for minority classes,

suggesting that EBGAN faces challenges in maintaining visual structure for underrepresented classes, while still

providing the variation essential for data augmentation.
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Table 3: Classification model performance in Scenario 1

Code Scenario Accuracy (%) Precision (%) Recall (%) F1-score (%)

S1 Original data (100%) 95.96 96.15 95.96 95.93

S2 Synthetic data (2000 per class) 93.89 94.53 93.89 93.95

S3 Original data (100%) + Synthetic data (100%) 96.79 96.94 96.79 96.77

While EBGAN effectively generates synthetic data that resembles the original distribution, it has both strengths

and weaknesses in data augmentation. Its main strength is maintaining inter-class distribution while adding

variations, which improves model robustness. EBGAN achieves lower FID scores than autoencoders, especially in

majority classes, indicating it captures fine details better. However, it struggles with minority classes, producing

distorted characters like broken strokes or misconnected structures. This happens because the model doesn’t have

enough data to learn these rare features well. EBGAN also shows lower SSIM scores in minority classes, meaning

it sacrifices structural accuracy for variation. While EBGAN is a strong tool for data augmentation, additional

methods, like class-aware training, may be needed to improve the quality of samples for rare classes.

Based on the evaluation of score characteristics and visual analysis, EBGAN is generally able to produce

synthetic data that resembles the original data, both in terms of structure and distribution between classes. Although

there are weaknesses in minority classes, such as broken or misconnected characters, the t-SNE visualization shows

that the synthetic data still represents the original data distribution well. This indicates that EBGAN is effective as

a data augmentation method, especially in handling data imbalance.

In summary, the strengths of using EBGAN lie in its ability to balance class distributions effectively and

generate synthetic data that maintains global inter-class relationships, as evidenced by the t-SNE visualization and

lower FID scores in majority classes. However, its weaknesses become apparent in minority classes, where the

model struggles to generate visually accurate characters, leading to issues like broken or misconnected components.

This limitation is influenced by the imbalance in the original dataset and EBGAN’s focus on introducing variation,

which can compromise the visual quality in underrepresented classes. Despite these challenges, EBGAN remains

a valuable tool for data augmentation, particularly in applications where balancing class distributions is critical.

4.2. Performance Evaluation of Recognition Model

A. Scenario 1: Effect of Synthetic Data on Original Data

This evaluation aims to assess the effectiveness of the synthetic data in augmenting and balancing the original

data. In Scenario 1, synthetic data is used to perform oversampling until the number of each class reaches the

maximum number of classes in the original data, which is 1881 characters. From Table  3, it is observed that

using synthetic data as augmentation improves the performance of the recognition model compared with using the

original data or synthetic data separately. The combination of original and synthetic data yields the highest accuracy,

precision, recall, and F1-score, indicating that synthetic data effectively complements the original data by adding

variety and helping to overcome data imbalance.

B. Scenario 2: Synthetic Data Sufficiency for the Recognition Model

In Scenario 2, this evaluation aims to determine the amount of data needed to be used in the classification

model, and to see the impact of adding more synthetic data beyond the number of original data on the model’s

performance. Based on Table 4, the additional synthetic data more than the original data (S4-S7) can slowly improve

the model’s performance, indicating its capability to represent the original data in conducting classification. The use

of synthetic data as augmentation in S7 shows that the recognition model does not experience overfitting synthetic

data, even though the amount of original data is much smaller than synthetic data.

However, this improvement becomes smaller after the addition of synthetic data beyond a certain amount,

which indicates the phenomenon of diminishing returns [34]. The metrics value decreased in S5 but increased again

in S6 and S7. This indicates that adding more synthetic data than a certain amount starts to provide more limited
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Table 4: Classification model performance in Scenario 2

Code Scenario Num. of data Accuracy (%) Precision (%) Recall (%) F1-score (%)

S3 Oversample synthetic data 1881

(100% of original data)

37,620 96.79 96.94 96.79 96.77

S4 Oversample synthetic data 2000 40,000 97.13 97.24 97.13 97.10

S5 Oversample synthetic data 3000 60,000 96.86 97.06 96.86 96.86

S6 Oversample synthetic data 4000 80,000 97.27 97.39 97.27 97.25

S7 Oversample synthetic data 5000 100,000 97.51 97.58 97.51 97.49

benefits. Therefore, although increasing the amount of synthetic data can improve model performance, there is a

point where the improvement starts to decrease, which needs to be considered in the selection of the optimal amount

of synthetic data.

C. Scenario 3: Effect of Minority Class Selection

In Scenario 3, the goal of this evaluation is to evaluate the effectiveness of oversampling only minority classes

compared to oversampling all classes. In oversampling minority classes, the selection of minority classes can be

done with several approaches: (i) percentage-based approach (25%, 50%, 75% thresholds), (ii) distribution-based

approach (mean and quartile statistics thresholds), (iii) base model performance-based approach (recall and F1-

score thresholds).

The results in Table  5 show the experimental results of various oversampling strategies on classification

performance. The results of using oversampling on all classes close to the maximum number of original data classes

in S3 show the highest overall performance. However, more targeted oversampling strategies (S8-S16) show that

targeted augmentation can still improve accuracy, precision, recall and F1-score. Oversampling based on a fixed

percentage (S8-S10) shows that increasing the augmentation percentage provides a gradual increase in performance,

but experiences diminishing returns as the amount of synthetic data approaches the maximum limit. Meanwhile,

oversampling based on statistical distribution (S11-S14) and model performance metrics (S15-S16) show that

strategically selecting minority classes, rather than uniformly augmenting all classes, can result in equivalent or

even better improvements in some cases. Similarly, statistical methods such as median and quartile thresholds (S12-

S14) provided better generalization than random selection, with S14 (third quartile-based oversampling) achieving

one of the best performances.

The effectiveness of targeted oversampling depends on how minority classes are selected. The recall-based and

F1-score-based strategies (S15-S16) show competitive results, indicating that prioritizing hard-to-recognize classes

can provide greater benefits. These results suggest that rather than simply augmenting all classes equally, performing

selective augmentation based on performance gaps or data distribution can optimize model improvement while

minimizing unnecessary data augmentation.

D. Scenario 4: Generalizability of the Recognition Model

In Scenario 4, this evaluation aims to determine the ability of synthetic data to help generalize the classification

model. The dataset is evaluated using 5-Fold and 10-Fold Cross Validation. In this method, the dataset is divided

into equal parts. The model is trained using k-1 parts and tested on the remaining parts, repeated k times until each

part is used as test data. The evaluation result is calculated based on the mean and standard deviation of all folds.

This approach ensures that the model is tested on various subsets of data.

The evaluation results in Table 6 using 5-Fold and 10-Fold Cross Validation show that the addition of synthetic

data with GAN-based oversampling consistently improves model performance compared to using only original

data. In both scenarios, both accuracy, precision, recall, and F1-score improved after oversampling. In addition,

the smaller standard deviation in the 5-Fold scenario with synthetic data indicates that the model is more stable

and has lower variability in its predictions. However, using 10-Fold increases the standard deviation, although the
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Table 5: Classification Model performance for Scenario 3

Basic Code Scenario Minority Class Accuracy (%) Precision (%) Recall (%) F1-score (%)

- S3 Oversample all

(1881)

All class except 2 96.79 96.94 96.79 96.77

S8 Oversample by

value of top 25%

(470)

[3, 6, 12, 13, 14,

15, 17, 18, 19, 20]

95.99 96.15 95.99 95.97

S9 Oversample by

value of top 50%

(940)

All class except 2

dan 5

96.23 96.48 96.44 96.25

Percentage

S10 Oversample by

value of top 75%

(1410)

All class except 2 96.44 96.60 96.44 96.43

S11 Oversample by

value of mean

(549)

[3, 6, 12, 13, 14,

15, 17, 18, 19, 20]

95.92 96.11 95.92 95.89

S12 Oversample by

value of Q1 (252)

[3, 12, 13, 15, 19] 96.37 96.50 96.37 96.34

S13 Oversample by

value of median

(522)

[3, 6, 12, 13, 14,

15, 17, 18, 19, 20]

95.82 96.03 95.82 95.80

Distribution

S14 Oversample by

value of Q3 (724)

All class except 1,

2, 5, 8, 16

96.55 96.70 96.55 96.53

S15 Oversample by

value of recall

< 90%

[3, 7, 12, 15, 17] 95.89 96.08 95.89 95.89Base Performance

Model

S16 Oversample by

value of F1-score

< 90%

[3, 12, 15] 96.30 96.41 96.30 96.29

Table 6: Classification model performance using 5-Fold and 10-Fold cross validation

Scenario Num. of Fold Accuracy (%) Precision (%) Recall (%) F1-score (%)

Original Data 5 95.52 ± 0.43 95.68 ± 0.46 95.52 ± 0.43 95.40 ± 0.54

Original Data + Oversampling with GAN 5 96.83 ± 0.18 96.97 ± 0.17 96.83 ± 0.18 96.82 ± 0.18

Original Data 10 95.85 ± 0.54 96.04 ± 0.52 95.85 ± 0.54 95.79 ± 0.56

Original Data + Oversampling with GAN 10 96.73 ± 0.50 96.89 ± 0.49 96.73 ± 0.50 96.71 ± 0.50

performance is better compared to the original data. This shows that the data generated is evenly distributed, and

the model is able to generalize quite well.

However, while these results show improved generalization within the current dataset, this may not hold for

larger or more complex datasets. The synthetic data generated by EBGAN is based on patterns from the original

data, which may limit its ability to capture variations in more diverse datasets, such as different handwriting styles,

degraded manuscripts, or varying script sizes. As the dataset grows, the model may face challenges in maintaining

consistent performance, especially if the synthetic data cannot represent rare or complex features accurately. The

increased standard deviation in the 10-Fold Cross Validation suggests that the model’s stability decreases with more

varied data splits, indicating potential limitations in EBGAN’s ability to generalize to more complex scenarios.

4.3. Comparation with Previous Methods

In this scenario, this study compares the effectiveness of GAN (EBGAN) with several previously used data

augmentation methods, namely traditional methods (translation and rotation), SMOTE, B-SMOTE, and ADASYN.
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Fig. 10: Visual comparison of synthetic data using EBGAN, Traditional, SMOTE, B-SMOTE, and ADASYN

Table 7: Classification model performance compared with previous methods

Scenario Accuracy (%) Precision (%) Recall (%) F1-score (%)

EBGAN 96.56 ± 0.20 96.78 ± 0.16 96.56 ± 0.20 96.56 ± 0.19

Traditional 96.81 ± 0.31 96.98 ± 0.27 96.81 ± 0.31 96.80 ± 0.31

SMOTE 97.18 ± 0.14 97.32 ± 0.15 97.18 ± 0.14 97.18 ± 0.14

B-SMOTE 96.12 ± 0.31 96.36 ± 0.31 96.12 ± 0.31 96.11 ± 0.31

ADASYN 96.12 ± 0.43 96.33 ± 0.39 96.12 ± 0.43 96.11 ± 0.42

The main purpose of this comparison is to evaluate the ability of synthetic data generated by GAN to improve the

performance of the classification model, compared to the commonly used conventional augmentation methods.

Fig. 10 shows the comparative visualization of synthetic data from each method, from the visualization it can

be seen that the EBGAN method is visually able to replicate the original data quite well. While the traditional

method produces a more varied image due to differences in character size and position, but in some cases makes

the resulting character cropped. In the SMOTE method, the resulting character tends to produce an interpolation

between two images, seen from the characters that seem to have shadows. This shows the limitations of SMOTE in

producing synthetic data limited to existing data, with less variation. Meanwhile, B-SMOTE and ADASYN show

visually shapeless and tend to be difficult to recognize. This shows the superiority of the EBGAN method which is

more visually consistent and indicates more variety than the previous methods.

The comparison of various augmentation methods in Table 7 shows that the B-SMOTE and ADASYN methods

produce relatively low performance, as indicated by the visualization of characters that are not representative of the

original data. Meanwhile, the traditional method is able to produce better performance, but the resulting truncated

characters as in the visualization allow overfitting when used in larger numbers. In addition, the SMOTE method

produces the best performance compared to other methods, even compared to EBGAN. This can happen because

SMOTE is used on limited data, allowing SMOTE to fit data based on existing data, but limited to the variety of

data available and allowing it to produce the same data. In the proposed GAN method using EBGAN, the resulting

performance is quite good although lower than the traditional method and SMOTE. This shows the potential

for better development of GANs to generate characters which support the improvement of classification model

performance. Overall, GAN-based augmentation is a good alternative, especially in scenarios with imbalanced data.

5. Conclusion

This study evaluates the effectiveness of synthetic data generated using Enhanced Balancing GAN (EBGAN)

in overcoming data imbalance in script recognition. Based on the results of quantitative analysis using Fréchet

Inception Distance (FID) and Structural Similarity Index (SSIM), as well as visual evaluation, the synthetic data

generated has a quality close to the original data.

Experiments show that the combination of original and synthetic data can improve accuracy, precision, recall,

and F1-score compared to using them separately with F1-score of 95.93% increasing to 96.77%. In addition, the

oversampling strategy of synthetic data proved to be effective in meeting the data requirements for training the
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recognition model. The selection of minority classes and the selection of thresholds based on percentage, distrib

ution, and model performance in oversampling can be used as a guide to improve script recognition performance.

Validation using 5-Fold Cross Validation and 10-Fold Cross Validation shows that the generated model is able to

generalize evenly for each subset of generated data.

Compared to previous methods, EBGAN is able to produce synthetic data that is more varied and has better

visual quality, thus it can be used as an alternative in improving the performance of script recognition models.

However, further research is still needed to optimize the performance of GAN in supporting script recognition more

effectively and efficiently.
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