
Yuni, Wibowo, and Ridha — A Model and Implementation of Academic Data Integration in Near-Real Time using

Message Oriented Middleware to Support Analysis of Student Performance in

the Information Technology Department of Politeknik Caltex Riau

http://dx.doi.org/10.12962/j24068535.v18i1.a898 9

Yuni1), Ardianto Wibowo2), and Muhammad Arif Fadhly Ridha3)
1)Information System Study Program, Politeknik Caltex Riau

2)Computer Engineering Study Program, Politeknik Caltex Riau
3)Informatics Engineering Study Program, Politeknik Caltex Riau

e-mail: yuni15si@mahasiswa.pcr.ac.id1), ardie@pcr.ac.id2), fadhly@pcr.ac.id3)

ABSTRAK

 Pemanfaatan data telah secara efektif berkontribusi pada pertumbuhan institusi dengan memberikan wawasan untuk tujuan

manajerial. Di Jurusan Teknologi Informasi (TI) Politeknik Caltex Riau, sistem informasi dibangun secara terpisah, sehingga

sulit bagi kepala program studi untuk menganalisis kinerja akademik. Untuk keperluan analitis, ada sistem bisnis inteligensia

yang dikembangkan untuk menyediakan setiap kepala program studi di Departemen TI pengetahuan tentang departemen

mereka. Sayangnya, sistem bisnis inteligensia ini belum dilengkapi dengan integrasi data. Untuk mengatasi masalah ini,

penelitian ini mengusulkan 2 model integrasi data real-time waktu akademik yang berbeda yang didokumentasikan

menggunakan Enterprise Integration Pattern dan membuat tolok ukur implementasi untuk mendapatkan model integrasi data

terbaik. Model menggunakan Message-Oriented Middleware, sebuah teknologi yang memungkinkan komunikasi asynchro-

nous antara berbagai aplikasi. Penelitian ini menggunakan WSO2 ESB sebagai alat MOM dalam Service-Oriented Architec-

ture (SOA) yang menggunakan library NuSOAP untuk membantu menghasilkan layanan web WSDL dan akan menggunakan

pendekatan Integrasi Aplikasi Perusahaan. Pengujian dilakukan berdasarkan aspek ISO 9126: fungsionalitas, efisiensi, dan

keandalan. Berdasarkan hasil pengujian, dapat disimpulkan bahwa kedua model integrasi memenuhi aspek fungsionalitas

dan keandalan, tetapi pola ke-2 lebih efisien karena memiliki saluran pesan dan penyimpanan yang berbeda untuk setiap

dimensi dan tabel fakta.

Kata Kunci: Integrasi Data, Message-Oriented Middleware, Near-Real Time ETL, Service Oriented Architecture.

ABSTRACT

Data utilization has effectively contributed for institutions growth by providing insights for managerial purposes. In Infor-

mation Technology (IT) Department of Politeknik Caltex Riau, information systems were built separately, makes it hard for

the head of study program to analyze academic performance. For analytical purposes, there’s a business intelligence devel-

oped to equip each head of study programs in IT Department with knowledge about their department. Unfortunately, the

business intelligence hasn’t considered with data integration. To solve this problem, this research proposes 2 different aca-

demic near-real time data integration model that are documented using Enterprise Integration Pattern and benchmarks the

implementation to obtain best data integration model. The models use Message-Oriented Middleware, a technology that ena-

bles asynchronous communication between diverse applications. This research uses WSO2 ESB as the MOM tools in Service-

Oriented Architecture (SOA) that use NuSOAP library for helping generating web service WSDL and use Enterprise Applica-

tion Integration approach. The testing is conducted based on ISO 9126 aspects: functionality, efficiency, and reliability. Based

on the testing results, it can be concluded that both integration models fulfill the functionality and reliability aspects, but the

2nd pattern is more efficient because it distinct message channel and store for each dimension and fact table.

Keywords: Data Integration, Message-Oriented Middleware, Near-Real Time ETL, Service Oriented Architecture.

I. INTRODUCTION

ODAY effective use of data is important in industry competition. Industry decides faster response by uti-

lizing historical and operational data. Business intelligence has been proven to effectively help the industry

grows by providing better insights of data, trends, thus providing necessary information for managerial

purposes.

In Politeknik Caltex Riau, especially in Information Technology (IT) Department, insight of students’ data in

each study program is not available. For analyzing academic performance, head of study programs gather data from

number of systems i.e. academic, admissions, and research & community services to support the decision-making

A MODEL AND IMPLEMENTATION OF

ACADEMIC DATA INTEGRATION IN NEAR-REAL TIME

USING MESSAGE-ORIENTED MIDDLEWARE

TO SUPPORT ANALYSIS OF STUDENT PERFORMANCE IN

THE INFORMATION TECHNOLOGY DEPARTMENT OF

POLITEKNIK CALTEX RIAU

T

mailto:yuni15si@mahasiswa.pcr.ac.id
mailto:ardie@pcr.ac.id
mailto:third.author@email.com

JUTI: Jurnal Ilmiah Teknologi Informasi - Volume 18, Number 1, January 2020: 9 – 18

 10

process. In addition, the decision-making process greatly relies on person who currently serves as the head of study

programs. If a new head of study program is selected and transition process is not being held properly, then analyt-

ical process is possibly be unsynchronized. Whereas, the academic analytical process is critical to deal with existing

problems. In this case, existing study focuses to create business intelligence system [1]. However, existing infor-

mation systems are built individually. The existing business intelligence system has not considered with data inte-

gration.

This research is aimed for data integration model that support business intelligence requirements. The integration

connects three objects: academic system, admission system, and data warehouse. Data integration model must

ensure the data to be complete, accurate, and trusted. In addition, it has to be timely manner.

The proposed study designs Academic Data Integration Model in Near-Real Time using Message-Oriented Mid-

dleware. Two integration models benchmarked to find the best integration model that fits the requirement. Mes-

sage-Oriented Middleware (MOM) is implemented technology that helps to integrate applications to communicate

in an asynchronous way. The integration receives a message from a first software system, transforms at least a

portion of the message into a generic format. Furthermore, it transforms the received message into a format that

fits the intended recipient. In this research, the system utilizes WSO2 ESB as a tool to transform the received

message into accepted XML format. The research also implements Service-Oriented Architecture (SOA). With the

proposed architecture model, the implementation eventually produces fast and reliable data integration for the busi-

ness intelligence.

II. LITERATURE REVIEW

A. Previous Work

Various research in the area of real-time ETL processes and Data Integration Model have been published. Author

in [2] proposed a related research that implemented data integration based on the need of data integration between

central pharmacy and branch pharmacy using web service in each pharmacy and utilized WSO2ESB as the mid-

dleware and using NuSOAP as the web service library.

Another research by [3] designed near real-time data warehouse integration model for accommodating integra-

tion and access to a big amount of data in a retail business using Service Oriented Architecture that used Change

Data Capture (CDC). The web service also used NuSOAP as the web service library.

Other related research is [4], where this research designed and implemented data integration between several

systems for mapping lecturers’ works, researches, and community services. The integration implemented using

RESTful web service from CodeIgniter Rest Server Library. The result is a system to show all the integrated data

for efficient assessment of lecturers’ work and research.

Further related research is proposed by [5]. The research used Windows Communication Foundation (WCF) as

the integration framework and used MSMQ, as the middleware to send asynchronous message from one service

endpoint to another. This research utilized Business Activity Monitoring (BAM) to capture data from SOAP enve-

lope in WCF request or response to minimize latency.

This research focuses on designing and implementing near-real time data integration model between information

systems and data warehouse using Message-Oriented Middleware, NuSOAP as the SOAP library, where the re-

search is implemented in Enterprise Application Integration approach.

B. Theoretical Basis

1) Data Integration Approaches

There are several approaches that successfully applied data integration technique. The most popular approaches

are such as following:

1. Extract Transform Load

This approach is commonly used for feeding large volume of data from operational databases into data ware-

houses. Mostly, ETL is utilized in data warehouse.

2. Enterprise Information Integration

Enterprise Information Integration (EII) emerged to be a solution for integrating multiple sources without

having to load the data into a central warehouse [6]. EII allows this by focusing on query management.

3. Enterprise Application Integration

Enterprise Application Integration is an integration framework that allows unrestricted sharing of infor-

mation between two or more enterprise applications [7]. This framework consists of technologies and ser-

vices, like middleware, to enable the exchange of message and transactions within the enterprise.

Yuni, Wibowo, and Ridha — A Model and Implementation of Academic Data Integration in Near-Real Time using

Message Oriented Middleware to Support Analysis of Student Performance in

the Information Technology Department of Politeknik Caltex Riau

 11

2) Near-Real Time ETL

Near-Real Time ETL is a mechanism for data warehousing to ensure the data in the data warehouse can be

timely, which is beneficial for highly used system [8]. Contrary to traditional ETL, in Near-Real Time ETL, the

data loading is performed continuously. By using Near – Real ETL, it is beneficial for the end user as the data

source is more up-to-date and it can provide better data insight.

Near – Real ETL can be implemented in various way, e.g.:

a. Change Data Capture (CDC)

CDC is applied aligned with stream processor. To integrate both of data, stream processor and CDC are con-

nected to a message queue. CDC stores any data change in a log. The data source reads CDC to update the

data.

b. Real Time Data Cache (RTDC)

By using RTDC, the temporary real time data is stored, as the cache can be updated periodically to move its

content to the data warehouse.

c. Middleware

Middleware can bridge communication between systems and provide mechanism to store data for each update.

3) Service – Oriented Architecture

Service – Oriented Architecture is a type of architecture that is service- oriented where services are provided to

the other components through a communication protocol over a network [9]. Service in SOA is a group of functions

or procedures, or process that respond to clients’ requests. The service-orientation concept approaches the problem

by dividing it to smaller services to finish specified problems. SOA makes best practices for the development in

the field of Enterprise Application Integration (EAI) because of the approach allows reusability, interoperability,

distributed deployment, and composability within a system.

4) Web Services

Web services are platform and language independent standard defining protocols in XML based that used internet

to interact with other applications [2]. This technology adopts open standard such as SOAP, HTTP, and XML that

allows web service to be implemented by different vendors without concerning the language or the platform. The

key benefit of web services is they allow the system connected to each other without the need of massive reengi-

neering.

Web service offers some benefits and flexibilities such as:

a. Interoperability

Web service’s characteristic, platform and language independent, enables data exchange and communication

between computers with different operation systems. Web service can also be accessed by diverse program-

ming language, such as PHP, JSP, Java, VB.Net. Web service can also be accessed by mobile device.

b. Bridging Communication to Database

Traditionally, application needs database driver to be able to communicate with a database. Web service can

act as a bridge between application and database so that application doesn’t need to use database driver.

c. Facilitate Data Exchange

Because web service can be accessed by diverse platform and language program, it makes data exchange

easier.

5) Message – Oriented Architecture

Message-Oriented Middleware is a software or hardware infrastructure that provides messaging capabilities be-

tween distributed systems on the basis of the asynchronous interaction mode. For the deployments, MOM acts as

intermediary for exchanging the messages between the senders and the recipients [10]. A primary benefit of using

MOM is the loose coupling between the systems, facilitate the data integration without having to adapt the source

and the system to each other.

MOM provides built-in services for its implementation to maximize the utilization in enterprise scale. According

to [10], there are several services available:

a. Message Filtering, where it allows the receiver to select the received messages based on certain criteria.

b. Transactions, providing ability to group tasks together.

c. Guaranteed Message Delivery, by saving all the messages in a nonvolatile storage, and resend the message

when the consumer doesn’t receive the message in a certain amount of time.

d. Message Formats, allows the user to use several formats available, such as Text, Object, Stream, HashMaps,

Streaming Multimedia.

JUTI: Jurnal Ilmiah Teknologi Informasi - Volume 18, Number 1, January 2020: 9 – 18

 12

e. Load Balancing, spreading the workload over the server with the lightest load.

f. Clustering, distributing an application over multiple servers and maintaining a single entity seamlessly.

6) Enterprise Integration Pattern

Enterprise Integration Pattern is a pattern that portrays how different applications integrate, to ensure that sepa-

rate applications work together to produce a unified set of functionalities [11]. Enterprise Integration Pattern shows

how the process of data delivery through a message exchanges between applications.

III. RESEARCH DESIGN

A. System Architecture

The proposed model designs the messaging procedure between the academic system, admission system,

WSO2ESB, and Data Warehouse as shown in Figure 1.

Instead of receiving and updating data on a scheduled basis, the data warehouse is updated per row as an XML

message. This message is sent from WSO2 ESB to the data warehouse after each update takes place. The client

systems (academic system and admission system) sends a request to a certain proxy service within WSO2 ESB that

implements the same method being consumed by the request, where this request may contain parameters that is

included in the XML message. Then, WSO2 ESB send the returned value from the method to the data warehouse.

B. Messaging Pattern

1) First Messaging Pattern

As shown in Figure 2, for the first pattern, there’s only one channel that is used as the in-sequence. For the first

pattern, all the input is processed the same: the data are sent to Router Service and are sent to each message store

as described in the message. After being stored, the fact_table message and dimension_table message are processed

by a Scheduled Forwarding Message Processor, to ensure the data are inserted successfully to the Data Warehouse.

2) Second Messaging Pattern

As shown in Figure 3, for the second pattern, the channel is differentiated for each dimension and fact table. The

content-based router determines the type of message and the right message storage by implementing external PHP

service. The storing mechanism is the same as the first pattern, using Scheduled Forwarding Message Processor

and external service.

Fig. 1. System architecture.

Yuni, Wibowo, and Ridha — A Model and Implementation of Academic Data Integration in Near-Real Time using

Message Oriented Middleware to Support Analysis of Student Performance in

the Information Technology Department of Politeknik Caltex Riau

 13

C. Data Illustration

For this research, the data transformation is illustrated differently for each pattern. The illustration is based on

the “prodi” data transformation to “dim_prodi” data.

1) First Pattern Data Illustration

In the first pattern, first the client sends request by calling the service’s function to insert “prodi” data (shown in

Figure 4). The result is returned by service, transforming the data into the fitting format of data warehouse, includ-

ing the identifier as shown in Figure 5. The result is returned to the middleware and is processed by content-based

router and inserted to the defined message store as shown in Figure 6. After stored, the message is forwarded to

external service and is inserted to data warehouse.

Fig. 2. First messaging pattern.

Fig. 3. Second messaging pattern.

JUTI: Jurnal Ilmiah Teknologi Informasi - Volume 18, Number 1, January 2020: 9 – 18

 14

2) Second Pattern Data Illustration

On the second pattern, each dimension and fact table have different channel, so there’s no need to use identifier.

First client send request to service. The difference is the return message from the service which only contain

“daftar_dim_prodi” as shown in Figure 7. The message store is differentiated for each dimension, so the message

is stored to “prodi_store”, as shown in Figure 8.

After stored, the message is forwarded to external service and is inserted to the data warehouse.

IV. IMPLEMENTATION AND ANALYSIS

A. Integration Implementation

For the integration process, the trigger is put on a button in each prototype pages. Once the button is clicked, the

client sends a request filled with operational data to the middleware and the data are processed. The trigger button

is shown in Figure 9. The middleware logs the incoming message as shown in the Figure 10.

After that, the message channel reads the response and determine which service to send the message. The service

only accept the message that fit the WSDL description as shown in Figure 11.

Fig. 4. First pattern request example.

Fig. 5. First pattern service result.

Fig. 6. Result in message store.

Fig. 7. Second pattern service result.

Fig. 8. Second pattern result in message store.

Yuni, Wibowo, and Ridha — A Model and Implementation of Academic Data Integration in Near-Real Time using

Message Oriented Middleware to Support Analysis of Student Performance in

the Information Technology Department of Politeknik Caltex Riau

 15

The message is returned and stored in the message store. The message forwarding processor then detects each

message in message store and forward it to external service. The service’s task is to save the data to data warehouse.

After that, the data are inserted to data warehouse as in Figure 12.

B. Testing

This research uses SOA testing method based on ISO/IEC 9126 on three aspects: functionality, efficiency, and

reliability.

1) Functionality Testing

Functionality testing is conducted using black-box testing method with 14 test cases. Based on the result of black-

box testing, the functionality aspect can be calculated using formula based on ISO 9126 as shown in (1) and (2) for

the first pattern and the second pattern, respectively. Based on the calculation result, both of the integration models

fulfill the functionality aspect based on ISO/IEC 9126.

Fig. 9. Integration process trigger.

Fig. 10. Middleware incoming message log.

Fig. 11. Service's WSDL.

Fig. 12. Data warehouse result.

JUTI: Jurnal Ilmiah Teknologi Informasi - Volume 18, Number 1, January 2020: 9 – 18

 16

A1 = 0 (total failed functionality test cases for first pattern)

B1 = 14 (total success functionality test cases for first pattern)

𝑋1 = 1 −
0

14
= 1

(1)

A2 = 0 (total failed functionality test cases for second pattern)

B2 = 14 (total success functionality test cases for second pattern)

𝑋2 = 1 −
0

14
= 1

(2)

2) Performance Testing

The aspects tested for performance aspects are the messaging patterns’ runtime performance to different load of

clients’ requests. Each of the patterns is compared, where the fastest pattern can be said more efficient. The result

is obtained using Apache JMeter tools and shown as response time graph.

Figure 13 shows a graph of benchmarking result for sending fact table ips, where blue line shows 2nd pattern

result and red line shows 1st pattern result.

Based on the efficiency testing conducted on Apache JMeter, it is shown that the 2nd pattern is faster in reformat-

ting data from client request and sending data to external service.

3) Reliability Testing

The scenario is to test the reliability of the messaging procedure in sending the message from client to data

warehouse when the data warehouse server is turned down. The messaging pattern is supposed to be able to handle

server’s unavailability. In this situation, the messaging pattern holds the responsibility to ensure the data insertion

successful. The messaging pattern can be said reliable if the data is inserted successfully and the data is complete.

Based on the reliability testing that has been conducted on 10 test cases, the reliability aspect can be obtained

using formula based on ISO 9126 as shown in (3) and (4) for the first and the second patterns respectively.

A11 = 0 (the total number of failures were detected during a defined trial period)

A21 = 10 (the number of executed test cases)

𝑋1 =
0

10
= 0 (3)

Fig. 13. Efficiency testing result.

Yuni, Wibowo, and Ridha — A Model and Implementation of Academic Data Integration in Near-Real Time using

Message Oriented Middleware to Support Analysis of Student Performance in

the Information Technology Department of Politeknik Caltex Riau

 17

A12 = 0 (the total number of failures were detected during a defined trial period)

A22 = 10 (the number of executed test cases)

𝑋2 =
0

10
= 0 (4)

 As both of the reliability aspect scores are equal 0, both patterns can be said as reliable.

C. Analysis

Based on testing that has been conducted referring to ISO 9126, the result shows that both integration model

fulfill the functionality and reliability aspect. The integration model can be said successfully meet functionality

requirement when the functionality score close to one. Both integration models have functionality metric score

equal to one meaning that both integration models meet the requirement. For reliability aspect, the integration

models meet the requirement from reliability metrics score, which is closer to 0. Both integration models score 0

for reliability aspect.

For the performance aspect, as shown from the benchmarking result, the 2nd pattern has better performance on

most of the test cases. The 1st pattern only excels on 2 test cases: dim “asaldaerah” integration process and fact

“kelulusan” integration process. Seeing that 9 out of 11 test cases show that the 2nd pattern has faster average

response time, it can be concluded that the 2nd pattern is more efficient.

From the testing result, it can be concluded that the 2nd integration model is a better model to integrate system

in near-real time. This can be achieved by having different message channel, message store, and message processor

for each dimension and fact table. When there are multiple incoming requests from client, in the 1st integration

model, the request is processed only by 2 message channels and message stores. While the middleware is still

processing the message, another message is queued within the same message store, elongating the message queue

within message store. On the other hand, the 2nd pattern distributes incoming requests to different message stores.

The queue for each message processor is shortened than in the 1st pattern. This condition makes the response time

become slower gradually for the 1st pattern. This condition, however, mostly can be observed with multiple loads

of requests.

Another cause of better performance with the 2nd pattern is because the 2nd pattern does not require data identifier

within the message, while the 1st pattern does. The incoming message on the 1st pattern is only handled by 1 message

channel, thus require data identifier to differentiate each incoming message type. Putting and reading data identifier

require more time, making the 1st pattern has slower response time.

V. CONCLUSION AND SUGGESTION

A. Conclusion

Based on the implementation and testing that has been conducted, the comparison of the pattern result can be

concluded as follows. Using the Enterprise Application Integration and utilizing message-oriented middleware to

implement data integration can integrate data from and to different systems in near-real time. Both data integration

models are able to provide sufficient data in the fitting format to data warehouse for the business intelligence

system. Both data integration models can ensure the reliability of data in data warehouse by using the data-loss

prevention within message-oriented middleware. Based on benchmarking results, it’s better to distinct the message

channel and message store of data within middleware, especially when it typically has many requests. This way, it

can enhance the performance of data integration model.

B. Suggestion

For future development, there are several suggestions as follows. (1) For better implementation, the middleware

should able to send both HTTP 202 code first to client and HTTP 200 code after the actual request has finished as

information to the client-side. This might need further research using I/O socket as HTTP request can only accept

one request and one response. (2) The current model hasn’t been equipped with fault sequence to prevent problems

within middleware. It’s best to provide middleware with fault sequence as error handling method within middle-

ware.

REFERENCES

[1] A. P. Sani, “Pengembangan Sistem Business Intelligence untuk Analisis Kinerja Akademik Mahasiswa di Lingkungan Jurusan Teknologi Informasi

Politeknik Caltex Riau,” Politeknik Caltex Riau, 2018.

[2] E. Marshila, “Sistem Informasi Apotek Menggunakan Teknologi Enterprise Service Bus (ESB) (Studi Kasus : Apotek Rumbai Sehat),” J. Aksara

JUTI: Jurnal Ilmiah Teknologi Informasi - Volume 18, Number 1, January 2020: 9 – 18

 18

Komput. Terap. Politek. Caltex Riau, vol. 2, no. 1, 2013.
[3] I. M. D. J. Sulastra, M. Sudarma, and I. N. S. Kumara, “Pemodelan Integrasi Nearly Real Time Data Warehouse dengan Service Oriented Architecture

Untuk Menunjang Sistem Informasi Retail,” Maj. Ilm. Teknol. Elektro, vol. 14, no. 2, p. 11, 2015.

[4] A. A. G. Y. Paramartha, N. K. Kertiasih, and G. R. Dantes, “Integrasi Data Penelitian , Pengabdian kepada Masyarakat , dan Kinerja Dosen di
Universitas Pendidikan Ganesha,” Semin. Nas. Vokasi dan Teknol., pp. 314–320, 2016.

[5] A. A. Ali and W. M. Mohamed, “Using a Business Activity Monitoring and SOA for a Real-Time ETL,” Int. J. Comput. Appl., vol. 180, no. 10, pp.

975–8887, 2018.
[6] A. Halevy and J. Ordille, “Data Integration : The Teenage Years,” Artif. Intell., vol. 41, no. 1, pp. 9–16, 2006.

[7] M. A. P. M. Van Den Bosch, M. E. Van Steenbergen, M. Lamaitre, and R. Bos, “A Selection-Method for Enterprise Application,” Perspect. Bus.

Informatics Res. 9th Int. Conf. BIR 2010, Rostock Ger. 2010. Proc., vol. 9th Intern, pp. 176–187, 2010.
[8] A. Wibowo, “Problems and Available Solutions on the Stage of Extract, Transform, and Loading in Near Real-Time Data Warehousing (A Literature

Study),” 2015 Int. Semin. Intell. Technol. Its Appl. ISITIA 2015 - Proceeding, pp. 345–349, 2015.

[9] I. S. Gracia, A. Wibowo, and I. Muslim, “Rancang Bangun Aplikasi E-commerce dengan Mengotomatisasi Purchase Order (PO) Menggunakan
Service Oriented Architecture dan Metode Fast Slow Non (FSN) Analysis,” J. Aksara Komput. Terap., vol. 5, no. 1, 2016.

[10] E. Curry, “Message-Oriented Middleware,” in Middleware for Communication, Q. H. Mahmoud, Ed. Chicester: Wiley, 2004, pp. 1–28.

[11] B. Woolf and G. Hohpe, Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions. Boston: Addison-Wesley, 2004.

