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ABSTRAK 

Spesifikasi kebutuhan perangkat lunak (SKPL) merupakan sebuah spesifikasi fungsional (kapabilitas) dan non-

fungsional (keterbatasan, karakteristik, kualitas dan properti) dari sebuah perangkat lunak yang harus dikembangkan ber-

dasarkan kondisi atau kapabilitas yang harus dilengkapi perangkat lunak atau dibutuhkan oleh pengguna. Bagi pengem-

bang, dokumen SKPL digunakan sebagai referensi di setiap tahap pengembangan. Dalam proses pembuatan dokumen 

SKPL, kemungkinan ada beberapa hal yang cacat. Salah satu yang dikenal sebagai The Seven Sins of Specifier adalah 

noise. Noise pada SKPL dapat terjadi selama proses SKPL. Noise ini diterjemahkan dalam bentuk informasi yang tidak rel-

evan dengan daftar kebutuhan pengguna. Penelitian ini bertujuan untuk mendeteksi noise dalam dokumen SKPL. Proses 

deteksi noise menggunakan spectral clustering untuk memisahkan dan mengelompokkan noise (yang dianggap sebagai out-

lier) selain dari kebutuhan lainnya. Pada metode ini, dengan menggunakan natural language processing bahwa setiap pern-

yataan kebutuhan direpresentasikan sebagai sebuah vektor frekuensi dari kata-kata yang unik yang muncul dalam pern-

yataan kebutuhan. Sebuah cluster yang memiliki jarak rata-rata paling besar antara data setiap individu dan centroidnya 

dianggap memiliki noise. Hasil uji coba menunjukkan bahwa metode yang diusulkan memiliki sensitivitas tinggi yaitu 1.0 

untuk data riil dan data sintetis. Namun, metode ini memiliki spesifisitas yang rendah untuk data riil sebesar 0.19 

dibandingkan dengan data sintetis sebesar 0.83.   

  

Keywords: noise detection, software requirements, spectral clustering, natural language processing. 

 

ABSTRACT 

Software Requirements Specification (SRS) is a specification of functional (capabilities) and non-functional (constraints, 

characteristics, qualities, and properties) of a software that should be developed based on the conditions or capabilities that 

must be equipped the software or required by the users. For developers, SRS document is used as a reference in every stage 

of development. In the process of making the SRS document, there could be some defects. One of those defects, which were 

called as The Seven Sins of Specifier, is noise. Noise in the SRS could occur during the software requirements specification 

process. It lateralized in the form of information that is not relevant to the list user requirements. This study aims to detect 

noise within the SRS document. The noise detection uses spectral clustering to separate and group noise (which is consid-

ered as outlier) aside from the rest of requirements. In this method, by using natural language processing each requirement 

statement is represented as a vector of frequencies of unique words appeared within the requirement statement. A cluster 

that has the widest average distance between its individual to its centroid is considered to have noise. The experimentation 

shows that the proposed method has a high sensitivity, i.e. 1.0, for both real and synthetic data. Nevertheless, the method has 

a low specisivity for real data, i.e. 0.19, compare to the synthetic data, i.e. 0.83.   

  

Keywords: noise detection, software requirements, spectral clustering, natural language processing. 

 

I. INTRODUCTION 

N requirements specification stage, software development becomes an important process according to Boehm 

and Basili [1]. Fixing errors during the implementation process would spend exponentially higher cost com-

pared to fixing the errors during requirements and design processes [2]. Therefore, developers should pay 

more attention on requirements process. 

There are three approach methods that can be used to analyze requirements specification, namely: natural lan-

guage, semi-formal language, and formal language. Natural language is a requirements specification formulation 

approach which uses common language. Semi-formal language uses a graphical language and textual explanation 

within. Formal language uses mathematical concepts such as finite-state machines. According to Rossi [3], as 

much as 71,8% software requirements specification documents have been created using natural language ap-

proach. This is because the approach is easily understandable for software engineers as well as the customers 

with various background.  

Meyer [4]–[8] explains that the process of Software Requirements Specification using natural language has 

several weakness compared to formal language. The weakness is caused by seven common mistakes which are 

often done by software developers. Meyer formulated the seven mistakes as “The seven sins of specifier”. One of 

seven sins of specifier is noise. Noise may appear in Software Requirements Specification (SRS) document. In a 

I 

mailto:first.author@email.com1
mailto:second.author@email.com


Manek and Siahaan — Noise Detection in Software Requirements Specification Document using Spectral Clustering 

 

 
 

31 

 

requirements specification, noise occurs when software developers add some irrelevant information to the overall 

software requirements. 

As the development of information technology, noise on the data has a lot of meaning. Noise can represent use-

less data, imperfect data, or data that cannot be read by a computer [9]. Noise can affects the results of data min-

ing analysis. Within this study, a noise is considered as any statement within the requirements specification that is 

not relevant to the system being developed or is not relevant to the requirements engineering process [2], [10]. 

There are several studies about noise or outlier detection of text data. Detection of text deviations has been devel-

oped using conceptual graphs [11]. The study provides graph visualization to the deviations that occur in a text 

data.  

Clustering methods can be used to detect noise or outliers in the data [12]–[17]. Clustering classifies objects 

which have similar characteristics within specific clusters. Outliers is an object that has dissimilar characteristics 

with respect to the rest of its neighbors. Cai et al [12] developed an application based on spectral clustering to 

detect a sentence which is considered as noise within a summarization section within a document. The output of 

the application is the outlier sentences within the summarization section. Furthermore, another study used one-

pass clustering to detect outliers on existing datasets [18]. The method divides the dataset into several hyper-

spheres that have almost the same radius. Clustering results are divided into two groups, namely: "normal" or 

"outlier" based on its outlier factors. In addition, the k-Means clustering method has also been developed to detect 

noise [13], [19], [20].  

The noise detection based on spectral clustering in a textual document has been developed as a preprocessing 

stage in text summarization method [12]. The study used spectral clustering algorithm to detect noise in sentenc-

es. Spectral clustering method with noise detection [21] was considered in detecting noise in software require-

ments. The study uses a synthetic data for the experimentation. Spectral clustering methods have shown better 

performance than k-Means clustering or clustering based on hierarchy [21]. One of the advantages of spectral 

clustering is that it can adapt to various forms of data. Clustering methods can also be implemented to look for 

data that have fewer characteristic similarities to other data or can be considered as noise. 

This research proposes a method for detecting noise in Software Requirements Specification (SRS) by using 

spectral clustering. This research is intended to provide information for developers about the characteristics of a 

set of requirements statement in a Software Requirements Specification (SRS). 

 

II. RESEARCH METHODOLOGY 

There are some three main steps in this process, i.e. text preprocessing, spectral clustering, and outlier selec-

tion. 

A. Text Preprocessing 

Software Requirements Specification (SRS) document contains a list of requirement statements. Before the out-

lier detection process, each statement needs to be textually preprocessed. The preprocessing involves tokenizing, 

lowercase converting, stopword removing, and lemmatizing sentences of each requirement statement. For the 

sake of illustration, let’s consider the following requirement statement.  

Submit jobs with the associated deadline cost and execution time. 

Basically, tokenizing is a process that breaks a text into its individual linguistic units. The statement would be 

first tokenized into the following tokens. 

Submit / jobs / with / the / associated / deadline / cost / and / execution / time /. 

Then, each token is converted into lowercase.  

submit / jobs / with / the / associated / deadline / cost / and / execution / time /. 

The next process is removing stopwords. Stopword removal is a text preprocess that removes any token of word 

that listed in a predefined stopword corpus. The stopword removal produces the following tokens. 

submit / jobs / associated / deadline / cost / execution / time  

The final process of text preprocessing is lemmatizing each token. The lemmatization would identified any in-

flectional form of word and returns its base or dictionary form of the word. In this study, it changes plural noun 

into singular noun and inflected ending of verb into its base form.  

submit / job / associate / deadline / cost / execution / time 
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B.  Spectral Clustering 

The next step is clustering the set of preprocessed requirement statements using Spectral Clustering. The 

clustering should group statements that describe closely related functions into the same cluster. Assume G=(V,W) 

is an undirected weighted graph with node V contains points {viϵℝd|i=1,2,...,n}, where d is the amount of features 

in TF-IDF. Matrix W is a symmetrical matrix where the elements are values of gaussian similarity between data 

in V. D is a diagonal matrix where dii=Σjwij, then make a normalized Laplacian matrix (L).   

𝐿 = 𝐼 −  𝐷−
1

2𝑊𝐷−
1

2   (1)  

Then, it calculates eigenvector of Lnorm. It takes only first k-eigenvector and creates matrix X=[xij]nxk from 

them, where k is the number of clusters. Next, it normalizes the length unit for each row of matrix X. Each row of 

X corresponds to an initial data of TF-IDF. It calculates k-means of matrix X, where each row represents a data 

point in k-dimension. The clustering process would produce k clusters, that contain data point X.  The detail of 

spectral clutering is described in Figure 1. 

 

C.  Outlier Selection 

The clusters produced from the previous result are supposed to separate the cluster that contains noise state-

ments from the rest of the clusters that contains requirement statements. The noise statements are considered the 
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Fig. 1.  Spectral Flowchart 
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outlier individuals within the dataset. The noise statement should have different characteristics compare to any 

group of requirement statements that being grouped from the clustering process. It means that the noise state-

ments, as individuals, should be relatively farther from their centroid compared to those requirement statements 

from the rest of the centroids. The centroid where the noise statements resided should also be relatively farther 

than the rest of centroids. Therefore, this study select cluster that has the largest distance as the outlier clusters. 

That means that this outlier cluster contains noise statement. 

III. RESULTS AND DISCUSSION 

For the experimentation, this study uses 648 manually extracted software requirement statements from 14 SRS 

documents. Table I shows the dataset used in this study. Each document refers to different project from various 

problem domains. Each requirements statement labeled by 3 human annotators. The labels are Boolean type val-

ues. An annotator would label a statement with 1 (true) if and only if he/she thought that the statement is a noise. 

An annotator would label a statement with 0 (false) if and only if he/she thought that the statement is a relevant 

requirement statement. In this study, the method was considered as the fourth annotator that would be evaluated 

based on its reliability with respect with the human annotators. Therefore, the same labeling rules applied to the 

method. The reliability of the method would be measured with each annotator using a confusion matrix. Table II 

shows the confusion matrix used in this study.  

The experimentation scenario follows these steps: 

a. Store each preprocessed statement of each dataset into a single .csv document. Each statement is separated 

by a line.  

b. Create a questionnaire form for each dataset. Each human annotator labels each statement within the ques-

tionnaire with 1 (noise) or 0 (not-noise, good requirement statement). Validate the result and aggregate the 

answers from all annotators based on majority rule.  

c. Cluster each dataset (.csv) using spectral clustering algorithm. Select the outlier cluster. Based on the select-

ed outlier cluster, label each statement.  

d. Measure the reliability between method and each human annotator. 

The noise prediction result generated by the proposed method was evaluated using kappa statistics. It measures 

the reliability of method with respect to the human annotator. The measurement is expressed by a kappa value 

[22]. Table II shows the confusion matrix used for calculating kappa coefficient value. Kappa coefficient 

measures the degree of agreement of 2 assessments. 

TABLE I   

DATASET 

ID Project Name Num of Reqs 

DA-1 Submit Job 13 

DA-2 System Administrator 17 

DA-3 Archive Administrator 39 

DA_4 SPG Aplication 6 

DA-5 System Administrator Staf 33 

DA-6 Software Develompment 65 

DA-7 Display System 106 

DA-8 Internet Access 64 

DA-9 Meeting Initiator 13 

DA-10 Online System 17 

DA-11 Library System 86 

DA-12 IMSETY System 70 

DA-13 Manage Student Infor-

mation 

24 

DA-14 PHP Project 75 

 

 
TABLE II 

CONFUSION MATRIX OF NOISE DETECTION 

Annotator 
Method 

Noise Not-Noise Total 

Noise TP FN TP+FN 

Not-Noise FP TN TP+TN 

Total TP+FP FN+TN TP+FP+FN+TN 
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In this study, the value of kappa coefficient used to represent consistency between noise prediction and noise 

assessment by human annotators. This measurement also used to determine the consistency of noise assessment 

among the human annotators. Calculation of the kappa coefficient requires the number of events of assessor 1 and 

assessor 2 in giving a noise assessment to the software requirements statements. In this study, the assessor 1 and 

assessor 2 can either be the noise detector, and the human annotators, or one human assessor and other human 

annotators. Assessor 1 and assessor 2 can provide the requirements statements a true or false value as a noise as-

sessment. Here is the explanation of kappa statistics calculation input: 

- Ptp = The number of occurrences of human annotator and method (second annotator) give true values 

(TP) to the given requirement statement. 

- Pfn = The number of occurrences of human annotator gives a true value and method (second annotator) 

gives a false value (FN) to the given the requirement statement. 

- Pfp = The number of occurrences of human annotator gives a false value and method (second annotator) 

gives a true value (FP) to the given the requirement statement. 

Ptn = The number of occurrences of human annotator and method (second annotator) give false values (FF) to 

the given requirement statement. 

Based on GWET-AC1, the kappa value () can be calculated if the number of assessments of assessor 1 and 

assessor 2 is known. First the probability of the observed agreement between the two annotators, or Po is calcu-

lated by (2).  

 

𝑃𝑜 =  
𝑃𝑡𝑛+ 𝑃𝑡𝑛 

𝑃𝑡𝑝 +𝑃𝑓𝑛 +𝑃𝑓𝑝 +𝑃𝑡𝑛
    (2) 

 

Then the probability of the two annotators give a random value of true, or we can call it PT, can be calculated 

as well as the value of PF for the value of false. The probability value of random agreement, or Pe, can be calcu-

lated by (3). Thus, the coefficient value of kappa () can be calculated by (4). 

 

Pe =  PT + PF    (3) 

 =  
𝑃𝑜− 𝑃𝑒

1− 𝑃𝑒

  (4) 

  

As already mentioned, to evaluate the performance of the proposed method, this study compares the annota-

tions by the human annotators with the annotations by the method. The experiment was done by calculating the 

kappa coefficient value on the noise assessment made by both noise detector method and the human annotators. 

In this study there are 3 human annotators involved. Each annotator was given 14 questionnaires. Each question-

naire contains requirement statements of a specific software project. The annotator annotated each statement of a 

given questionnaire manually. In each questionnaire, a SRS document was also attached to allow the annotator to 

grasp the mission and business background of the developed system. 

The selection of human annotators was based on their professional and academic experiences in the field of 

TABLE III 

KAPPA VALUE BETWEEN NOISE PREDICTOR & HUMAN ANNOTATORS, INDIVIDUALLY AND MAJORITY 

No Comparison Kappa Value 

1 Noise Predictor & Human Assessor 1 0.4308 

2 Noise Predictor & Human Assessor 2 0.4082 

3 Noise Predictor & Human Assessor 3 0.3928 

4 Noise Predictor & Human Assessor Majority 0.4426 

 

 
TABLE IV 

KAPPA VALUE AMONG THE THREE HUMAN ANNOTATORS 

No Comparison Kappa Value 

1 Human Annotator 1 & 2 0.2068 

2 Human Annotator 1 & 3 0.3245 

3 Human Annotator 2 & 3 0.5390 
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software requirements engineering. All human annotators have academic background in software engineering. 

They have experience in teaching requirements engineering course in university level. They have been working 

on software requirements specification document for at least the last five years.  

The noise prediction result from the noise detection system is compared with the noise assessment from each 

human annotator and the majority answer of the three human annotators, as shown in Table III. In the table, the 

consistency between the noise prediction and the noise assessment from the human annotators is still very low. 

The highest consistency is resulted from the noise prediction and the majority noise assessment from the three 

human annotators, with kappa coefficient value 0.4426. 

A comparison of reliability assessment among the three human annotators had also been done to deepen the 

noise detection evaluation information in the software requirements specification document, as shown in IV. 

Through this experiment scenario, the consistency of the noise assessment among the three human annotators can 

be concluded. 

Each of SRS (Software Requirements Specification) documents has different structure of natural languages. 

The different structure of natural language in the SRS (Software Requirements Specification) documents could be 

the reason why the kappa values of each dataset was at the low level. Table IV is one example of a software re-

quirements statements that produces a kappa value between the noise prediction and the noise assessment of all 

three human annotators by majority. As in the table, the requirements statements that produce high coefficient 

kappa value, has a simple structure and has a short length. 

To further analyzed the result, Table V shows the detail reliability measurements of each dataset. The table 

shows five measurements, i.e. kappa score, kappa GWET’s AC1, sensitivity, specificity, and F1-score. The kappa 

score and kappa GWET’s AC1 measures reliability of annotators. The sensitivity measures the ability of the 

method to correctly identify noise statements. The specificity measures the ability of the method to correctly 

identify not-noise statements. Thus, F1-score measures the balance between sensitivity and specificity of the 

method. This experimentation also compared two policies on selecting outlier cluster. Column ‘A’ refers to the 

policy where a cluster with the furthest distance is the outlier cluster (proposed in this method). While column 

‘B’refers to the policy where a cluster with the closest distance is the outlier cluster. The result shows that in gen-

eral by using the further distance policy, the method would perform better. This indicate that clustering process 

tends to group noise statement separated from the rest of the requirement statements.  Nevertheless, the balance 

between sensitivity and specificity is low. This may be due to two reasons. First, some of the statement is relevant 

to the system, but not a requirement.  During the requirements engineering process, engineer might add state-

ments related to project management (e.g. project schedule, human resource, deliverables, etc), design (e.g. ap-

proach, modeling language, etc.), implementation (framework, programing language, vendors, etc.), or testing 

(e.g. tester, test methods, test data, etc.) These statements may have close distance to the rest of requirement 

statement, but they are also a noise. Second, the text preprocesses consider all types of POS. However, a re-

quirement statement primarily contains two important parts, i.e. actor and action. An actor is formed by a noun 

phrase. An action is formed by a verb phrase. Therefore, many unnecessary POS were included in the sentence 

TABLE V 

KAPPA VALUE AMONG THE THREE HUMAN ANNOTATORS 

Dataset 
Num

-Req 

Num 

Clusters 

Kappa Score Gwet’s ACI Sensitivity Specificity F1-Score 

A B A B A B A B A B 

DA-1 13 2 -0.13 0.05 0.58 -0.35 0.00 1.00 0.75 0.25 0.00 0.18 

DA-2 17 2 -0.10 0.03 0.70 0.51 0.00 1.00 0.25 0.19 0.00 0.13 

DA-3 39 2 0.07 -0.05 0.41 -0.07 1.00 0.00 0.60 0.3z9 0.11 0.00 

DA-4 6 2 -0.29 0.18 0.02 0.03 0.00 1.00 0.06 0.04 0.00 0.04 

DA-5 33 2 0.00 0.00 0.93 -0.87 0.00 0.00 0.93 0.06 0.00 0.00 

DA-6 65 2 -0.16 0.06 0.33 -0.15 0.04 0.95 0.81 0.14 0.06 0.51 

DA-7 106 2 -0.23 0.12 0.36 -0.10 0.00 1.00 0.65 0.35 0.00 0.32 

DA-8 64 2 -0.11 0.02 0.75 -0.59 0.00 1.00 0.91 0.09 0.00 0.24 

DA-9 33 2 -0.04 0.00 0.90 -0.82 0.00 1.00 0.93 0.06 0.00 0.06 

DA-10 17 2 0.01 -0.01 0.19 0.06 0.05 0.05 0.53 0.47 0.02 0.18 

DA-11 86 2 -0.04 0.02 0.53 -0.29 0.25 0.78 0.71 0.29 0.13 0.20 

DA-12 70 2 0.00 0.00 0.79 -0.61 0.00 0.00 0.82 0.17 0.00 0.00 

DA-13 24 2 -0.24 0.19 0.10 0.16 0.00 0.00 0.52 0.48 0.00 0.35 

DA-14 75 2 0.00 0.00 0.95 -1.00 0.00 0.00 0.96 0.00 0.00 0.00 

Average -0.13 0.05 0.58 -0.35 0.00 1.00 0.75 0.25 0.00 0.18 
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vector that shape the affinity matrix. This cause that the similarity value between sentences are not well distribut-

ed between noise and not noise. 

Based on the above experimental results, the noise prediction and the noise assessment from the three human 

annotators yields very low kappa value. Thus, the noise prediction has low consistency with the noise assessment 

from human annotators. This means that the method is considerably in fair agreement with the human annotators. 

This low consistency could be the result of the structure of natural language used on the software requirements 

statements. From further observation on each statement, the experimentation also indicates that a simpler struc-

ture sentences would be more accurately predicted than the complex ones. 

IV. CONCLUSION 

The noise detection in the software requirements specification has benefits in software development. The bene-

fits of noise detection in the software requirements include avoiding errors as early as possible so as to reduce 

repair costs and can provide information about software requirements priorities. 

Spectral clustering methods can be used to detect noise in software requirements. However, there are several 

factors that affect the performance of noise detectors, such as sentence structure, sentence length, and number of 

software requirements present in a software requirements engineering document. The experiment in this research 

uses kappa coefficient value which measure the level of agreement between noise prediction by noise detector 

and noise assessment by 3 human annotators. The resulting kappa coefficient is 0.4426 which is still unsatisfacto-

ry. 

Further study may focus on adding classification process before the clustering process in order to improve the 

performance of the method. The classification process would separate the non-requirement but project related 

statement from the rest of requirement statements. In addition, further research is required to improve the text 

preprocesses in order to make sure that only actor or action related tokens is included in the sentence vector. 

V. RECOMMENDATION 

For the further research, the analysis of sentence context in detecting noise can be done. The noise rating would 

be better if done by an expert in software requirements engineering. 
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